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1 Introduction

Empirical studies have asserted that a plethora of variables contain information

about future excess returns in regressions of the form:

rt = α + β′xt−1 + ut, (1)

where rt denotes the return of the aggregate stock market portfolio in excess of

the risk-free rate, and xt−1 is a vector of predictive variables, such as the dividend

yield, a term spread or certain macroeconomic variables.1 Statistically significant β

coefficients in Eq. (1) are interpreted as evidence for predictability and as evidence

that risk premia are time-varying.2

Given the large number of variables proposed in the literature, a typical investor

is confronted by a high degree of uncertainty on what the “right” state variables

are. Moreover, the fact that so many variables have found to be valuable predictors

of returns naturally raises the concern that the apparent predictability may well

arise due to data-snooping rather than genuine variation of economic risk premia.3

The aim of this paper is, therefore, to explore the robustness of several predictive

variables in international stock markets in the context of model uncertainty. One of

the major results of the paper is that few of the predictive variables put forth in the

literature are truly robust predictors of returns. Second, substantial differences in

the degree of in-sample and out-of-sample predictability can be observed across

different stock markets.

1See e.g. Fama and French (1988), Fama and French (1989), Campbell and Shiller (1988a), Camp-
bell and Shiller (1988b), Lettau and Ludvigson (2001) etc.

2Based on the evidence for return predictability provided by the aforementioned articles, by the
late 1990s the consensus among financial economists considered expected excess returns to be
time-varying. In particular, predictability of market excess returns has been labeled as one of the
“new facts in finance” (Cochrane, 1999).

3See e.g. Bossaerts and Hillion (1999), Ferson et al. (2003) for critical views. Most notably, after a
comprehensive out-of-sample forecast evaluation, Goyal and Welch (2008) come to the conclusion
that knowledge of different state variables is of little use for a real-time investor. They interpret
their findings as strong counterevidence against stock return predictability.
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In this paper, we follow the spirit of the seminal work by Cremers (2002) and

Avramov (2002) and use Bayesian model averaging in order to account for model

uncertainty. Unlike the classical framework, the Bayesian approach does not as-

sume the existence of a “true” model. By contrast, a-posteriori model probabilities

can be derived for the different candidate models, which are then used to weight

the coefficients accordingly in a composite model. In this way, model uncertainty

can be accounted for in a coherent way.

A new feature of our approach is to account for finite-sample bias of the coeffi-

cients in the predictive regressions in a “frequentist” model averaging framework.

A pure Bayesian model averaging framework as in Cremers (2002) and Avramov

(2002) requires prior elicitation for the relevant parameters conditional on the dif-

ferent models. The specification of prior beliefs can be a problematic task when

the set of models becomes very large.4 Therefore, in order to reduce the impact

of subjective prior information, we base our empirical study on Bayesian averag-

ing of classical estimates (BACE) as in Sala-i-Martin et al. (2004). BACE can be

seen as a limiting case of the Bayesian approach as the prior information becomes

dominated by the data (See Leamer, 1978). Another less-attractive feature of the

pure Bayesian model averaging approach as used by Cremers (2002) and Avramov

(2002) is that it treats the predictive variables as exogenous, an assumption which

is clearly invalid in the context of predictive regressions. How to conduct reliable

inference in predictive regressions while taking the time-series properties of the

predictive variables (such as the dividend yield) into account has been the subject

of a great amount of recent research (See for instance Stambaugh, 1999; Campbell

and Yogo, 2006; Lewellen, 2004; Amihud and Hurvich, 2004; Torous et al., 2004;

and Moon et al., 2006). In order to account for problems due to the persistence of

the predictive variables, we estimate the models by classical OLS, where the coef-

ficients are adjusted for finite-sample bias using the approach put forth in Amihud

and Hurvich (2004). The bias-corrected coefficients in the particular models are

then weighted by their posterior model probabilities which are derived according

4Avramov (2002) addresses this problem using an empirical Bayes approach which uses sample
data for prior elicitation. In the Bayesian tradition, Cremers (2002) specifies subjective prior dis-
tributions based on different skeptical or optimistic beliefs about predictability.
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to the BACE approach of Sala-i-Martin et al. (2004).

This paper also contributes to the existing literature by conducting a comprehen-

sive analysis of stock return predictability in major international stock markets.

It is fair to say that the profession’s view on stock return predictability has been

shaped for the most part by empirical studies on the US stock market. However,

examining other important capital markets more closely may provide important

additional insights, especially in a controversial field such as return predictabil-

ity. Moreover, investigation of international markets also provides another way

of guarding against data-snooping concerns. We thus examine the predictive per-

formance of nine variables in a total of five international stock markets (France,

Germany, Japan, United Kingdom, United States). Other important recent papers

which provide evidence on international stock markets include Neeley and Weller

(2000), Hjalmarsson (2004), Rapach et al. (2005), Paye and Timmermann (2006),

Giot and Petitjean (2006) or Ang and Bekaert (2007).5 To the best of our knowledge,

however, evidence on the effects of model uncertainty for return predictability in

major international stock markets has been lacking so far.

There is a long list of variables which has been proposed in the literature on stock

return predictability. In particular, valuation ratios such as the dividend yield or

the earnings yield (e.g. Fama and French, 1988; Campbell and Shiller, 1988a;

Lewellen, 2004), interest rate related variables such as short-term interest rates

(e.g. Fama and Schwert, 1977; Hodrick, 1992; Ang and Bekaert, 2007) or default

and term spreads (e.g. Campbell, 1987; Fama and French, 1989) have featured

prominently in predictive regressions. Lamont (1998) has proposed the dividend-

payout ratio as a predictive variable. The predictive power of stock market volatil-

ity has been studied by French et al. (1987). Pure macroeconomic variables used

in predictive regressions include for instance the inflation rate (e.g. Fama, 1981),

consumption-wealth ratio (Lettau and Ludvigson, 2001), price-GDP ratio (Rangvid,

5Hjalmarsson (2004) and Paye and Timmermann (2006) consider only four financial variables. Ra-
pach et al. (2005) focus merely on macroeconomic variables and do not consider financial valuation
ratios. Giot and Petitjean (2006) consider finite-sample bias but do not address the issue of model
uncertainty. Their set of predictive variables is limited to five financial variables.
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2006), industrial production growth (e.g. Fama, 1990 or Avramov, 2002), and more

recently the output gap (Cooper and Priestley, 2006). Variables motivated from a

behavioral point of view (such as stock market sentiment as in Brown and Cliff,

2005) have also been shown to predict returns.

The brief review of the literature in the previous paragraph suggests that there

is not much consensus on what the important variables are, or, put differently,

that there is a tremendous model uncertainty in predictive regressions. In particu-

lar, some variables may appear significant in one specification and be insignificant

in others, as researchers may only report their preferred specifications. As time

elapses, more variables are sure to be added to the list of predictors.

While in-sample predictability is a debated topic, the question whether stock re-

turns may be predictable out-of-sample (OOS) has been even more controversial.

Empirical results on OOS predictability are mixed. Recently, several authors –

most notably Goyal and Welch (2008) – argue against stock return predictabil-

ity or time-varying risk premia based on the lacking evidence for out-of-sample

predictability.6 Campbell and Thompson (2007), however, find that once sensible

restrictions are imposed on the predictive regression coefficients, the OOS fore-

cast performance can be improved. It has also been argued that averaging fore-

casts of various models enhances out-of sample forecast performance substantially.

Avramov (2002) finds that the out-of-sample performance of the weighted model is

superior to the performance of models selected by information criteria and better

than a naive benchmark. Another aim of the paper therefore is to look closer at

the out-of-sample forecast performance of model averaging, in particular the time-

variation of OOS performance in the spirit of Goyal and Welch (2008).

Our main results can be summarized as follows. Several notable differences with

regard to return predictability are found across countries. We find that interest

rate related variables are usually among the most robust predictive variables in

6Cochrane (2006) defends predictability based on the argument that even though predictability
from the dividend-price ratio may be weak on statistical grounds, the fact that dividend growth is
not predictable at all, may be interpreted as evidence that the variation of the dividend-price ratio
is informative about future expected returns.
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international stock markets, which corroborates recent results by Rapach et al.

(2005) and Ang and Bekaert (2007). Valuation ratios such as the dividend yield,

however, perform rather poorly. There is also some evidence across countries that

the output gap is related to expected returns and thus that risk premia vary with

the state of the economy as pointed out recently by Cooper and Priestley (2006).

The earnings yield often appears to be a more robust predictor than the dividend

yield. Yet, predictability of market excess returns clearly weakens, once model

uncertainty is accounted for. We only find some evidence for out-of-sample pre-

dictability by model averaging methods in the case of France but not for the re-

maining stock markets. Overall, our international analysis reveals that return

predictability is not a uniform and a universal feature across international capital

markets.

The remainder of the paper is structured as follows. Section II discusses the econo-

metric framework of predictive regressions and how model uncertainty can be ac-

counted for in a model averaging framework. Section III briefly discusses our data

set. Empirical findings are discussed in Section IV. Section V concludes.

2 Methodology

In this paper we assess predictive ability in the conventional framework of predic-

tive regressions. When there are multiple predictive variables (depending on the

particular model Mj), the predictive equation for future stock returns is given by

rt = α + β′
jxj;t−1 + uj,t, (2)

where rt denotes the (log)-return on the market portfolio in excess of the (log) risk-

free rate and xj;t−1 is a kj-dimensional vector of predictive variables, whose dimen-

sion and composition depends on the particular model Mj. In total, we utilize κ

different predictive variables which results in 2κ different subsets, i.e. vectors of

predictive variables xj;t−1 (j = 1, · · · , 2κ). βj is a kj-dimensional vector of regression
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coefficients on the predictive variables. As is common in the extant literature, the

vector of predictive variables is assumed to follow a first-order VAR:

xj;t = Θj + Φjxj;t−1 + νj;t. (3)

Θj is a kj-dimensional intercept and Φj is a kj × kj matrix with all eigenvalues

smaller than one in absolute value to ensure stationarity of the process. The errors

(uj;t, ν
′
j;t)

′ are i.i.d. multivariate normal with mean zero.

2.1 Accounting for Model Uncertainty

We want to put ourselves in the position of an investor who is confronted by the

voluminous literature on evidence for stock return predictability, yet is uncertain

about which variables are actually of importance. In such a context, a Bayesian

framework is attractive, since model uncertainty can be considered coherently. In

a classical framework, however, the search for the “true model” usually implies

running a series of model specification tests. Moreover, a classical approach is less

appealing, because once a single model is determined, information in the remain-

ing 2κ − 1 models is neglected. The approach taken in this paper is to combine the

Bayesian feature of model averaging with coefficients estimated by classical OLS

(BACE approach put forth by Sala-i-Martin et al. 2004).7 The major advantage is

that the BACE approach allows us correct for finite-sample bias of predictive slope

coefficients, which is an issue previously neglected in the Bayesian model averag-

ing literature as noted for instance by Stock and Watson 2004, p.34. Moreover, the

approach largely avoids the drawback of the dependence on prior distributions (See

Sala-i-Martin et al. 2004).

We explore the usefulness of κ = 9 candidate predictive variables in total, which

implies that 2κ = 512 different model combinations are assessed. In a Bayesian

framework, posterior probabilities p(Mj|y) for each model j = 1, . . . , 2κ can be de-

7Bayesian and classical results are numerically identical when diffuse priors are specified.
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rived. These posterior model probabilities are used in the Bayesian model averag-

ing framework as weights of the composite model:

E[β|y] =
2κ∑

j=1

p(Mj|y)βj|y, (4)

where βj|y denotes the posterior mean of the predictive coefficients in the jth

model. In the same way, the posterior standard deviation in the composite model

is obtained from the corresponding diagonal element of the matrix

V ar(β|y) =
2κ∑

j=1

p(Mj|y)[V ar(βj|y) + (βj − E[β|y])(βj − E[β|y])′]. (5)

Note that the posterior variance of the composite model in Eq. (5) contains essen-

tially two components: the first term in the brackets accounts for estimation risk,

whereas the second measures the variation of the predictive coefficients across the

different models and thus accounts for model uncertainty.8

For determining the weights, the marginal likelihood for the different models Mj

must be computed.9 In the pure BMA framework, analytical solutions can be found

only for certain prior distribution families.10 In the “frequentist” model averaging

framework of Sala-i-Martin et al. (2004), however, the marginal likelihood of a

particular model is approximated using the Schwarz criterion as exp(−0.5BICj).

The posterior model probability for Mj can then be derived as

p(Mj|y) =
p(Mj)exp(−0.5BICj)∑2κ

i=1 p(Mi)exp(−0.5BICi)
, (6)

8Following Avramov (2002), we report posterior standard deviations with and without adjustment
for model uncertainty in order to demonstrate the effects of accounting for model uncertainty in
the inference.

9Mathematically, the marginal likelihoods can be obtained by integrating out the parameters from
the combination of the likelihood and the prior conditional on the model.

10Avramov (2002), for instance, uses an “empirical Bayes” approach for prior elicitation, which
uses data-information from the sample in order to determine the prior specification. Yet, such
an approach can be criticized for using information of the dependent variable, which violates the
rules of probability necessary for conditioning (Fernández et al., 2001).
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where p(Mj) denotes the probability assigned to model j a-priori. As discussed

in Sala-i-Martin et al. (2004), this formula can be derived in a standard g-prior

framework taking the limit as the data-information increases relative to the prior

information. Thus, using posterior model probabilities as in Eq. (6) essentially

implies using a prior that becomes dominated by the data.

2.2 Finite-sample Bias in Predictive Regressions

In the following we outline our approach to correct for finite-sample bias in the

BACE framework. In order to provide some intuition on the econometric prob-

lems arising from predictive variables which are not exogenous but rather prede-

termined, we first briefly review the single predictor case by Stambaugh (1999)

rt = α + βxt−1 + εt, (7)

where rt denotes the (log)-return on the market portfolio in excess of the (log) risk-

free rate and xt−1 is a predictive variable such as the dividend yield. The predictive

variable itself is modeled as a first-order autoregressive process

xt = θ + ρxt−1 + ξt. (8)

The errors in Eq. (7) and Eq. (8) are assumed to be i.i.d. jointly normally dis-

tributed. Stambaugh (1999) then derives an analytical formula for the finite-

sample bias of the predictive coefficient

E(β̂ − β) ≈ γE(ρ̂ − ρ), (9)

where γ =
σεξ

σ2
ξ

is the ratio of the covariance of the errors in both equations (σεξ) and

the variance (σ2
ξ ) of the error term ξt . As Eq. (9) shows, the bias of the predictive

coefficients arises from the (downward) bias of the autoregressive parameter for
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the predictive variable ρ̂ in combination with the correlation of the innovations in

the predictive variable ξt and the error term εt in the predictive equation. The

latter effect can be particularly severe in the case of valuation ratios (where the

covariance between the shocks σεξ is typically strongly negative, which results in

an upward bias of β̂). A bias-corrected estimator β̂s = β̂ + γ̂(1 + 3ρ̂)/n, where n

denotes the sample size and γ̂ is a sample estimate of γ, has been used e.g. by Giot

and Petitjean (2006) in the single predictor case.

Since this paper is concerned about the issue of model uncertainty involving a

multiplicity of variables, we work with the generalized case of multiple predictors

as in Eq. (2) and Eq. (3). In order to obtain a bias-corrected estimator for the

vector of predictive coefficients βj in Eq. (2), we use the method recently put forth

by Amihud and Hurvich (2004). Their approach amounts to running an augmented

regression

rt = α + β′
jxj;t−1 + φ′

jν
c
j,t + ej,t, (10)

which is equivalent to running the predictive regression in Eq. (2) augmented by a

corrected kj × 1 residual series νc
j,t. As shown by Amihud and Hurvich (2004), this

procedure yields an unbiased estimator β̂c
j for the vector of predictive coefficients.

The residual series νc
j,t = xj;t − (Θ̂c

j + Φ̂c
jxj;t−1) is based on a reduced-bias estimator

for the autoregressive parameters Φ̂j in the multivariate autoregressive model in

Eq. (3). Our estimate of Φ̂c
j follows the approach put forth by Amihud and Hurvich

(2004) for the case when Φj is constrained to be diagonal.11 Hence, the different

series xi
j,t (i = 1, · · · , kj) are considered separately. The individual error series are

computed as νc,i
j,t = xi

j,t − θ̂c
i − ρ̂c

ix
i
j,t−1. The autoregressive parameters are adjusted

according to finite-sample bias by ρ̂c
i = ρ̂i + (1 + 3ρ̂i)/n + 3(1 + 3ρ̂i)/n

2. The reduced

bias-estimator β̂c
j is then obtained by regressing stock excess returns on the set of

kj lagged predictive and the corrected error proxies νi
j,t (i = 1, · · · , kj). Standard

11Allowing for a non-diagonal structure raises the need to estimate a multiplicity of parameters,
in particular as kj increases. This may result in a degradation of performance (See Amihud and
Hurvich (2004)). We therefore impose a diagonal structure.
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errors for β̂c
j are adjusted for the two-step procedure as proposed in Amihud and

Hurvich (2004).

3 Empirical Results

3.1 Data

Our dataset comprises monthly and quarterly data for five international stock mar-

kets: France, Germany, Japan, United Kingdom and the United States. The de-

pendent variables are (log) returns on broad stock indices in excess of the (log)

short-term interest rate. Monthly summary statistics on the dependent variables

and the predictive variables can be found in Table 1.

We assemble a data set of nine financial and macroeconomic predictive variables

for the different international stock markets. The following variables comprise our

set of predictors:

Interest rate variables: Difference between the yield on long-term government

bonds and the three-month interest rate (term spread, TRM), short term in-

terest rate relative to its 12-month backward-looking moving average (RTB),

long-term government bond yield relative to its 12-month backward-looking

moving average (RBR).

Valuation Ratios and other Financial Variables: Dividends paid over the past

12 months in relation to the current price (dividend yield, LDY) and earnings

over the past 12 months in relation to the current price (earnings yield, LEY),

both in logs. (Log) realized stock market volatility (LRV).

Macro Variables: Annual inflation rate (INF) based upon the Consumer Price

Index, annual industrial production growth (IPG), estimate of the output gap

obtained by the HP-filter (GAP).

[ Insert Table 1 here ]
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The selection of variables is guided mainly by the previous US literature, as well as

data availability. The main economic motivation for the different variables is that

they are considered to be informative about future expected aggregate cash-flows

in the economy or the discount rate applied to these cash-flows.12 Hence, these

variables have typically also featured prominently as state variables in empirical

tests of intertemporal asset pricing models, e.g. Campbell (1996) or Campbell and

Vuolteenaho (2004).

Due to data availability, the different sample periods differ across markets. For

most countries, the sample periods start in the early 1970s and end in mid 2000.

The US sample already starts in the late 1950s. Unfortunately, a default spread

based on the yield difference of BAA and AAA rated corporate bonds (as used e.g.

by Avramov 2002 or Cremers 2002) does not exist in the different international

markets outside the US in a reasonable quality. For further detailed information

on data sources and construction the reader is referred to Appendix A.

Table 1 provides monthly summary statistics on the mean, standard deviation and

first-order autocorrelation of the particular state variables. The autocorrelation

coefficients in the table show that some series, in particular valuation ratios and

the inflation rate, exhibit a fairly strong degree of persistence. For this reason,

taking the time series properties and potential finite-sample biases into account –

as we do in this study – seems to be warranted.

3.2 In-sample Results: Return Predictability in International Stock Markets

First, we discuss the results of the in-sample analysis of return predictability in

international stock markets. The only subjective element of the BACE approach

is the choice of the a-priori expected model size k̄, i.e. the researcher’s belief of

how many variables are a-priori likely to be included in the predictive model. We

12Subsets of these variables are used for instance in Fama and Schwert (1977), Fama (1981), Fama
and French (1988), Campbell and Shiller (1988a), Fama and French (1989)), Fama (1990), Ho-
drick (1992), Avramov (2002), Cremers (2002), Lewellen (2004), Rapach et al. (2005), Cooper and
Priestley (2006), Pastor and Stambaugh (2006), Ang and Bekaert (2007).
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choose a rather moderate specification of this hyperparameter, consistent with the

principle of parsimony prevailing in econometrics. We therefore set the a-priori ex-

pected model size to k̄ = 2 variables.13 This implies a prior probability of inclusion

of π = 2/κ = 0.2̄ for each variable. The choice of the expected model size is linked

to the a-priori model probability p(Mj) which is given as p(Mj) = πkj(1−π)κ−kj .14 It

is important to note that a prior probability of inclusion smaller than 0.5 amounts

to an a-priori down weighting of larger model specifications. This implies an addi-

tional penalty for highly parameterized models beside the penalty implied by the

degree of freedom adjustment of the BIC.

The tables for the different stock markets, which will be discussed in the following,

are all organized in the same way. Panel A and C are based on monthly data

while Panel B and D present results for quarterly data. Panel A and B report

results for the composite model with bias-corrected slope coefficients. π|y denotes

the posterior probability of inclusion for each variable. The posterior probability

of inclusion is defined as the total sum of the posterior probabilities of all models,

in which the particular variable is included; it is computed as C′P, where C is a

2κ × κ matrix denoting inclusion (exclusion) of a particular variable in model j by

1 (0), and P is a 2κ × 1 vector containing the posterior model probabilities p(Mj|y).

Posterior means of the predictive coefficients in the weighted model based on Eq.

(4) are reported in the second column of Panels A/B. The third and fourth column

report posterior Bayesian t-ratios. Following Avramov (2002), we report both t-

ratios based on posterior standard deviations which ignore model uncertainty and

t-ratios adjusted for model uncertainty (see discussion in Section 2).

We also assess the robustness of the different predictive variables according to two

other criteria. In Panels A/B we report the proportion of cases when the coefficient

on a particular variable (every time it is included in one of the j = 1, · · · , 2κ models)

has the same sign as the posterior mean in the composite model (denoted as sgn

prob. in the tables). Furthermore, we also report the fraction of cases across the dif-

13We discuss the sensitivity of the results to this choice of hyperparameter in section 3.3.
14In principle, one could also specify different prior probabilities of inclusion for the different vari-

ables based on economic considerations.
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ferent models when a classical t-statistic for the particular variable is greater than

two in absolute value. This statistic serves as another indicator of the robustness

or fragility of a particular predictive variable (Sala-i-Martin et al., 2004). Panels

C and D, presents the five top-performing model specifications which receive the

highest posterior probability of all models. The models are defined by inclusion

(1) or exclusion (0) of the specific variable. Moreover, the corresponding posterior

model probabilities and the adjusted R2 of the five top models are also reported.

3.2.1 France

Estimation results for the French stock market are provided in Table 2. As Panel

A (monthly predictive regressions) shows, the only variable for which the posterior

probability of inclusion π|y rises, compared to the prior probability of inclusion, is

the relative bond rate RBR. In the case of the other variables, inspection of the

data leads us to retract our prior opinion about their usefulness. Panel C reports

monthly results for the five best-performing model specifications. After having seen

the data, the model which includes RBR as a single predictive variable receives a

posterior model probability of more than 50%, which is greatly higher than the

one of the next best model specifications. A negative relation of the realative bond

rate and expected excess returns is reasonable from an economic point of view,

given that higher yields on long-term bonds are typically reflected in a higher level

of corporate loan rates and thus may have a negative impact on subsequent real

activity. The relative bond rate together with the output gap is also significant

according to a posterior t-ratio.

Robustness of a particular variable can also be assessed by the sign certainty prob-

ability which measures the fraction of cases where the coefficient on the particular

variable (when included in one of the 2κ Models) has the same sign as its coeffi-

cient in the weighted model. According to this criterion, the relative bond rate is

again rather successful. The relative bond rate (RBR), the term spread (TRM), in-

dustrial production growth (IPG) and the output gap (GAP) all have sign certainty

probabilities exceeding 90%, whereas several other popular predictors such as the
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dividend yield perform clearly worse. However, Table 2 also makes clear that none

of the variables remains significant when the additional variability of estimates

across models is accounted for.15

Panels B and D show that the evidence for predictability in the French stock mar-

ket is somewhat weaker in the quarterly case. Again, only the relative bond rate

receives a posterior probability of inclusion larger than 0.2̄. It is also worth noting

that the earnings yield performs relatively well in-terms of sign certainty in the

quarterly case.

3.2.2 Germany

Table 3 provides estimation results for the German stock market. As can be seen

in Panel A and C of Table 3, predictability of monthly stock returns is fairly weak

on statistical grounds. The case for predictability is clearly less pronounced than in

the French stock market discussed in the previous subsection. The model receiving

the highest posterior probability is the one without any lagged state variables (i.i.d.

case). None of the variables in the monthly model receives a higher posterior inclu-

sion probability compared to the prior inclusion probability of π = 0.2̄. Among the

variables considered only the relative bond rate (RBR) and the output gap (GAP)

may be considered as significant according to a Bayesian t-ratio, but this does not

hold true when the dispersion of coefficients across models is considered.

Similar to the French case, the relative bond rate is rather important in the quar-

terly regressions (Panel B of Table 3) where the probability of inclusion rises after

having seen the data. Evidence for predictability with quarterly data is somewhat

stronger than for monthly data. This can be seen from the result in Panel D that

the most likely quarterly model is now the one which includes the relative bond

rate. This model achieves an adjusted R2 of about 5% in the quarterly regressions,

15This is a general result which holds for almost all predictive variables and almost all stock mar-
kets considered. In this way, we provide evidence consistent with Avramov (2002) that predictive
regressions in finance are subject to a great deal of model uncertainty. Avramov also finds that
many variables which appear to be significant, lose their significance once model uncertainty is
considered.
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which is quite high for the stock return predictability literature. Several variables

appear quite robust with regard to sign certainty: The term spread (TRM), the rel-

ative bond rate (RBR), industrial production growth (IPG), and the two valuation

ratios (LDY, LEY) have the same sign as the posterior mean in the composite model

in more than 90% of all models in which they are included.

[ Insert Table 2 here ]

[ Insert Table 3 here ]

3.2.3 Japan

Results for the Japanese stock market are given in Table 4. As for Germany, there

is no compelling evidence that monthly stock returns in Japan are predictable: The

model with clearly the highest posterior probability in Panel C is the model with no

explanatory variables (i.i.d.-model). The output gap (GAP) and the relative bond

rate (RBR) are somewhat marginally important, but their explanatory power is

fairly low. Note also that industrial production growth (IPG) and inflation (INF)

are quite robust in terms of sign certainty probability.

With quarterly data, the evidence for predictability is even more modest. Again

the model which does not include any predictors receives the highest probability a-

posteriori. Only the output gap receives a higher posterior probability of inclusion

than expected a-priori (Panel D of Table 4). However, model uncertainty again

plays a substantial role as evinced by the adjusted Bayesian t-ratios. It is also

worth noting that according to the sign certainty measure, the output gap must be

considered as a rather fragile predictor.
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3.2.4 United Kingdom

Table 5 reveals, that both for monthly and quarterly predictive regressions, the

case for return predictability in the United Kingdom is quite weak. Panel C shows,

that the largest posterior probability in the monthly regressions is assigned to

the i.i.d.-model (as in the case of monthly regressions for Germany and Japan).

Contrary to the countries discussed so far, interest rate variables do not show up

among the most prominent predictors, which confirms the recent findings by Giot

and Petitjean (2006) based on univariate return prediction models. By contrast,

the dividend yield (LDY) has some predictive content for future stock returns in

the UK. Yet, as before, accounting for model uncertainty greatly reduces the evi-

dence for predictability and explanatory power of return prediction models in the

UK is rather low.

[ Insert Table 4 here ]

[ Insert Table 5 here ]

3.2.5 United States

As shown by Table 6, evidence for in-sample return predictability is clearly stronger

in the US compared to other international stock markets such as Germany, Japan

or the UK. Variables which appear important after having seen the data include

the relative bond rate (RBR) and, most notably, the output gap (GAP). The output

gap is the only variable which can be considered as a significant predictor once

model uncertainty is accounted for. It receives a posterior probability of inclusion

of more than 80%, which is a substantial upward revision of the prior probability

of inclusion.16 The output gap also appears to be a less fragile predictor in the US

16Thus, our results corroborate the results of the recent paper by Cooper and Priestley (2006) who
find that risk-premia are varying with the output-gap. Good economic conditions as measured by
the output gap are associated with low risk premia.
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compared to the other countries. It is also worth noting that the earnings yield

(LEY) provides more explanatory power than the dividend yield (LDY). Several

other variables – such as the relative bond rate (RBR), inflation (INF), and indus-

trial production growth (IPG) – are important when model uncertainty is ignored,

but lose their significance once model uncertainty is considered.

When we consider predictive models at a quarterly horizon, the output gap (GAP)

again appears as an important variable a-posteriori and also survives the model

uncertainty adjustment. Also note that the relative bond rate is less important in

the quarterly regressions. Panels A and B further show that the earnings yield

appears to be very robust with regard to sign certainty, which holds both in the

monthly and the quarterly models.

[ Insert Table 6 here ]

3.3 Sensitivity to the Choice of Hyperparameter

The previous discussion of in-sample predictability and differences in the relevance

of particular predictors across countries was based on a fairly moderate expected

model size of two variables. In this sub-section, we analyze the robustness of our

main findings to the specific choice of this hyperparameter k̄ which is linked to the

prior probability of inclusion π. For this purpose, we check whether our earlier

conclusions on the relevance of a particular variable – as measured by a poste-

rior probability of inclusion π|y exceeding the prior probability of inclusion π – are

affected by the choice of the expected model size. Table 7 reports posterior prob-

abilities of inclusion of the predictor variables for different prior probabilities of

inclusion π corresponding to model sizes with k̄ = 2, 4, 6 and 8 variables.

As shown in Table 7, our main conclusions on the relevance of a specific predictor

are largely unaffected by the choice of the expected model size. Panel A for France,

for instance shows that the relative bond rate can be considered an important pre-
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dictor for almost all choices of prior probabilities of inclusion. There is not a single

case where another predictive variable becomes relevant for a different choice of π

, i.e. that there is an upward revision of the probability of inclusion after having

seen the data. The same result holds true for the German (Panel B) and the British

(Panel D) stock market. Results on the usefulness of the output gap in Japan are

only slightly dependent on the choice of π but no other variable shows an upward

revision of the probability of inclusion for different choices of hyperparameters.

Results for quarterly predictive regressions for the US stock market (Panel E) are

also largely unaffected. In the monthly case, however, the earnings yield and the

inflation rate play a more prominent role in larger models, while the relative bond

rate only serves as a significant predictor in the case of small expected model sizes.

[ Insert Table 7 here ]

3.4 Out-of-Sample Analysis of Return Predictability

The question whether predictability of stock returns exists out-of-sample (OOS)

has been a much debated topic and results in the literature are mixed.17 There

are several theoretical reasons why OOS performance of stock return prediction

models may be poor. Cochrane (2006), for instance shows by simulations that even

in a world where risk premia are truely time-varying, the results of Goyal and

Welch (2008) will occur frequently. Inoue and Kilian (2004) argue that in-sample

predictability tests are more powerful than out-of sample tests and are therefore

more trustworthy when assessing the existence of a predictive relationship. An-

other reason for poor OOS predictability may be temporal instability of the return

prediction models.18 We address the latter issue by studying the time-variation

17The recent predictability debate has been spurred by the question whether the documented (lim-
ited) in-sample predictability is of any use for an investor in real-time. See the different conclu-
sions obtained by e.g. Goyal and Welch (2008) and Campbell and Thompson (2007).

18See also the recent papers by Paye and Timmermann (2006), Dangl et al. (2006) and Ravazzolo
et al. (2006).
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of OOS forecast errors in international stock markets using Net-SSE plots in the

spirit of Goyal and Welch (2008).

It is not the purpose of this paper to discuss the entire debate in the literature or

to take a particular side. Rather, we are interested in a thorough investigation

of the performance of model averaging in the context of OOS predictability of ex-

cess returns. Avramov (2002), for instance, argues that averaging the forecasts

of the different competing models in a Bayesian model averaging framework can

substantially improve the out-of-sample forecast performance. Therefore, the main

motivation of our analysis in this subsection is to reassess the findings by Avramov

(2002) in the context of major international stock markets.

For the purpose of evaluating OOS forecast performance, we estimate the 2κ mod-

els using a recursive scheme. The first ten years are used as initialization period.

Afterwards, the models are estimated recursively. We compare the performance

of several (conditional) models to the results of an unconditional (or naive) bench-

mark model which takes the prevailing historical mean as the forecast of the fu-

ture excess return. The model-based forecasts include Bayesian averaging of OLS

coefficients adjusted for finite-sample bias (BACE-adj), a conventional Bayesian

model averaging approach (BMA) with g-prior specification19, the individual model

which receives the highest posterior model probability according to BMA (denoted

as TOP), and an all-inclusive specification (ALL). Following Bossaerts and Hillion

(1999), we also assess the performance of individual models selected by the con-

ventional model selection criteria: Akaike criterion (AIC), Schwarz criterion (BIC),

as well as the adjusted R2. The corresponding (pseudo-) OOS forecasts are then

evaluated according to several criteria for assessing forecast accuracy.

Table 8 reports the results of the evaluation of OOS performance for our inter-

national set of stock markets. The evaluation of forecast accuracy uses standard

criteria. ME denotes the mean prediction error. Testing the significance of the ME

19The approach is similar to Cremers (2002). However, rather than motivating the g hyperpa-
rameter from economic reasoning, we follow recommended practice and set this parameter to
g = max{n, κ2}−1, where n denotes the sample size (See Fernández et al. 2001 or Koop 2003).

19



amounts to testing the unbiasedness of the forecasts. Theil’s U (TU) is the ratio

of the mean square prediction error (MSPE) of the particular model-based fore-

cast to the one of the naive benchmark model.20 In order to provide an evaluation

of directional accuracy of forecasts obtained by model averaging, we also report

the fraction of times the direction of the dependent variable is correctly predicted

by the model (denoted as Hit in the table). PT denotes the test-statistic for di-

rectional accuracy proposed by Pesaran and Timmermann (1992). Net-SSE plots

are depicted in Figure 1. These graphs display the cumulated sum of the squared

forecast errors of the benchmark model minus the squared forecast errors of the

model of interest. One can use these plots to infer how the OOS performance of the

predictive model evolves over time and where major forecast breakdowns occur.

Periods where the line in the graph is upward sloping represent times when the

conditional model outperforms the naive model in terms of squared forecast errors.

[ Insert Table 8 here ]

As the evaluation of the monthly forecasts in Table 8 shows, out-of-sample pre-

dictability of monthly stock returns is generally very limited. Moreover, notable dif-

ferences of OOS return predictability can be detected across countries. Table 8 also

shows that the BACE approach with bias adjustment generally compares rather

favorably in terms of forecast accuracy compared to conventional Bayesian model

averaging for most stock markets.

The results for the French stock market, presented in Panel A of Table 8, show

some evidence for out-of-sample predictability. This is consistent with the in-

sample results for the composite model, where also the evidence was stronger com-

pared to other capital markets (such as the UK or Germany). Panel A also shows

that model averaging approaches (BACE-adj, BMA) typically outperform the naive

20Note that TU is merely a descriptive criterion. In the case of nested models, the mean square
prediction error MSPE of the smaller nested model is expected to be smaller than the MSPE
under the null of equal predictive power, a point raised by Clark and West (2007). This is due to
the fact that the larger model needs to estimate parameters which are zero in population, which
introduces noise in the forecasts.
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model and model selection criteria in terms of MSPE, i.e. have a Theil’s U (TU)

smaller than one. All model-based forecasts generally appear to be unbiased for

the French case. The Net-SSE plot (a) in Figure 1 shows the relative OOS per-

formance of the forecasts produced by the BACE-adj model over time.21 As shown

by the graph, the model has produced lower squared forecast errors relative to the

benchmark up to about 2000. In the aftermath of the climax of the internet boom

no outperformance relative to the naive benchmark can be detected anymore.

In the case of Germany (Panel B of Table 8), BACE-adj and BMA generally do a

better job compared to other model specifications, but are not able to outperform

the i.i.d. model in terms of MSPE. This is consistent with the modest results for in-

sample predictability in Table 3, where little evidence for return predictability was

detected at a monthly horizon. The Net-SSE plot (b) in Figure 1 shows that OOS

predictability has been clearly stronger in the 1990s, where lagged state variables

contributed to lower squared prediction errors relative to the benchmark. Also

note that, similar to the French case, return prediction models did not provide

better forecast accuracy than the benchmark since the height of the new economy

boom until the end of the sample.

For the Japanese stock market the case for OOS predictability is also fairly weak,

as Panel C of Table 8 reveals: forecasts of the naive model generally produce a

lower MSPE than models conditioning on predictive variables. This is confirmed

by the Net-SSE plot (c) of Figure 1. The plot shows a decline of OOS forecast

performance of the weighted model forecast from the early 1990s onwards. Anal-

ogously to Germany and Japan, OOS predictability in the United Kingdom (Panel

D of Table 8) is very poor. Moreover, the United Kingdom is the only stock market

where conditional models produce forecasts with a substantial bias (however less

pronounced when model averaging techniques are used). Also note that the model

averaging methods (BACE-adj and BMA) again outperform the other selection cri-

teria but fail to outperform the naive model in terms of mean-square prediction

error.

21Net-SSE plots based on the BMA approach are generally quite similar.
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Evaluation results for the US stock market are given in Panel E of Table 8. Con-

trary to the in-sample regressions, out-of-sample predictability of US excess re-

turns is rather poor. Hence, our OOS results are more in line with Goyal and

Welch (2008) than Avramov (2002). The Net-SSE plot for the United States in

(e) of Figure 1 illustrates the time-variation in the degree of OOS predictability.

In particular, a steady decline of predictability since the late 1980s can be recog-

nized. This is consistent with other studies for the US documenting poor return

predictability over the 1990s (e.g. Paye and Timmermann, 2006; Ang and Bekaert,

2007).

[ Insert Figure 1 here ]

Results for quarterly market excess returns are quite similar to the monthly case

and are therefore provided in the Appendix B. We do not find much evidence that

OOS predictability increases with the horizon of the forecast. Quite to the con-

trary, OOS predictability is somewhat weaker than the OOS predictability in the

monthly case (e.g. for the US). Again, France is the only stock market where out-of-

sample return predictability by model averaging methods can be observed (Panel

A of Table B.1). Results for the German stock market (Panel B of Table B.1) are

quite similar to the monthly case. However, modest evidence of market timing pos-

sibility can be found for quarterly models. This happens in particular for highly

parameterized models (i.e. ALL, AIC, R̄2), with significant PT-statistics at the 10%

level. Quarterly results for Japan (Panel C) and UK (Panel D) are very similar

to the monthly case. For the US stock market (Panel E), evidence for OOS pre-

dictability with quarterly data is weaker compared to the monthly case. According

to the Net-SSE plot for the US in Figure B.1, a substantial forecast breakdown can

be detected in the aftermath of the first oil price shock (around 1974). As evinced

by Figure B.1, OOS performance of return prediction models in the US has been

poor over most of the 1990s consistent with previous studies mentioned before.
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4 Conclusion

This paper explores stock return predictability in international stock markets in

the context of model uncertainty. A Bayesian averaging of classical estimates

(BACE) approach is used to account for the tremendous uncertainty of a typical

investor in order to find out what the important predictive variables are. This ap-

proach is combined with a finite-sample bias correction which accounts for the per-

sistence of the usually employed state variables. Using a comprehensive dataset

for international stock markets allows us to gain fresh insights into the empirical

evidence for return predictability, which has so far been mainly based on results

for the US stock market.

We find substantial differences across countries in terms of return predictability.

Evidence for in-sample predictability is stronger for France and the United States

compared to the other countries. In the French case also a (modest amount) of out-

of-sample predictability can be detected. Out-of-sample predictability by model av-

eraging methods appears to be more accurate for monthly than for quarterly data.

Consistent with Avramov (2002), we find that model averaging often produces bet-

ter OOS forecasts than individual models based on selection criteria. Nevertheless,

we also document a substantial amount of time-variation of OOS forecast perfor-

mance by averaged forecasts.

Two variables appear to be quite robust predictors across countries: the relative

bond rate and the output gap. The latter is the only variable which also remains a

significant predictor of market excess returns in the US, once model uncertainty is

accounted for. The earnings yield often appears to be a more robust predictive vari-

able than the dividend yield. In general, however, our results show that evidence

for in-sample predictability for the excess returns in international equity markets

is substantially weakened once model uncertainty is accounted for.

The model averaging approach accounting for finite-sample bias employed in this

paper may be useful beyond the context of return predictability. In the field of

macroeconomic forecasting (e.g. inflation or real activity), for instance, also a
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large amount of model uncertainty exists and the typical predictors often exhibit

a fairly strong degree of persistence (cf. Stock and Watson, 2004). Moreover, an-

other promising subject for future research would be to link the evidence for time-

variation in expected returns with the cross-sectional variation of expected returns.

An international analysis under model uncertainty with size and book-to-market

sorted portfolios may provide additional insights into the particular risks which

are relevant to investors.
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Appendix A. Data Description

This section of the appendix provides a more detailed description of the stock re-

turns as well as the predictive variables used in our analysis. The original data are

monthly but we also report estimation results using quarterly data. Information

on the sample periods for the international stock markets can be found in Table 1.

Excess returns: The dependent variables for the international stock markets

are taken from various sources. In the case of Germany, the return on the DAFOX

is used, which is a broad stock index published for research purposes by Karl-

sruher Kapitalmarktdatenbank. It comprises all German stocks traded in the top

segment (Amtlicher Handel) of the Frankfurt stock exchange. For the US, the

value-weighted return on the CRSP market portfolio is employed.22 For the other

stock markets, we use broad stock market indexes by Datastream. Excess returns

are constructed by subtracting a risk-free rate proxy. When available, a 3-month

T-Bill is used as the risk-free rate proxy. Otherwise, a three-month money mar-

ket rate is used. Interest rates are taken from the Reuters-Ecowin database. In

the case of Germany, the money market rate for three-month deposits obtained

from the time series database of Deutsche Bundesbank is used as our proxy for the

risk-free rate.

Interest rate related variables: The term spread (TRM) is defined as the dif-

ference of the yield on long-term government bonds and the short-term interest

rate (3-month). The necessary yield curve and interest rate data were obtained

from the time series databases of Deutsche Bundesbank (Germany), St. Louis Fed

(USA), Econstats (France, United Kingdom and Japan). Following much of the

extant literature, the relative short-term interest rate (RTB) is calculated as the

short-term interest rate minus its 12-month backward looking moving average.

The relative long-term bond rate (RBR) is calculated as the long-term government

bond yield minus its 12-month backward looking moving average.

22We would like to thank Amit Goyal and Ivo Welch for providing these data on their webpages.

29



Valuation ratios and other financial variables: The time series of dividend

yields (LDY) and earnings yield (LEY) are defined as dividends (earnings) over the

past 12 months in relation to the current price. Both series are used in logs, which

improves their time-series properties as noted by Lewellen (2004). The US data

are taken from Amit Goyal’s webpage, while the rest of the valuation ratios refer

to the broad stock market indexes provided by Datastream. Realized stock market

volatility (LRV) is computed as the sum of the squared daily stock returns and is

also used in logs.

Macroeconomic variables: The annual inflation rate (INF) is calculated from

the seasonally -adjusted Consumer Price Index (CPI). Another macroeconomic vari-

able is the annual growth rate of industrial production (IPG). The time series of

the CPI as well as industrial production for the calculation of industrial produc-

tion growth (IPG) and the output gap (OPG) measure are taken from the IMF/IFS

database and were obtained from Reuters-Ecowin. Following Cooper and Priestley

(2006), we construct the output gap measure by applying the filter by HP-filter to

the logarithmic series of industrial production. As in Cooper and Priestley (2006),

the smoothing parameter is set to 128800 for the monthly data and 1600 for the

quarterly data. The cyclical component of the series is taken as the output gap.

Appendix B. Out-of-Sample Results at the Quarterly Horizon

[ Insert Table B.1 here ]

[ Insert Figure B.1 here ]
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Figure 1: Net-SSE Plots, Monthly

(a) France (b) Germany

(c) Japan (d) United Kingdom

(e) United States

The figure shows Net-SSE plots for the aggregate stock market following Goyal and Welch (2003).
Net-SSE is the cumulated difference of squared forecast errors of the unconditional benchmark
model (i.i.d. model) and the conditional model (BACE-adj): Net-SSE(τ) =

∑τ
t=1(e

2
uc,t − e2

c,t), where
euc,t is the forecast error of the unconditional benchmark, and ec,t is the error of the conditional
model. A decrease of the slope represents a better forecast performance of the unconditional model
at the particular point in time.
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Table 1: Summary Statistics, Monthly
France: 1973:02-2005:10

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0044 1.0938 -0.0677 -0.0654 5.1294 0.9889 -6.1797 -3.3346 -2.5178 0.0456

STD 0.0621 1.2517 1.4400 0.8517 4.0892 4.4328 0.7752 0.3515 0.3275 2.8689
AC(1) 0.0798 0.9207 0.9171 0.9237 0.9966 0.8737 0.5835 0.9782 0.9673 0.8598

Germany: 1974:02-2004:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0031 1.3726 -0.1960 -0.0943 2.8285 1.2246 -6.5848 -3.7179 -2.7080 -0.1855

STD 0.0513 1.6839 1.1858 0.6146 1.8475 4.0470 0.9695 0.3530 0.2514 2.8891
AC(1) 0.0872 0.9723 0.9566 0.9054 0.9777 0.8178 0.7488 0.9824 0.9568 0.8354

Japan: 1973:02-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0016 0.6874 -0.0750 -0.0850 3.0833 2.1889 -6.5518 -4.5379 -3.5609 -0.0424

STD 0.0522 1.1971 1.1642 0.6554 4.6170 6.2448 1.0202 0.5050 0.4687 4.1581
AC(1) 0.0838 0.9518 0.9611 0.9066 0.9890 0.9426 0.7242 0.9930 0.9905 0.9402

United Kingdom: 1973:01-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0037 0.7989 -0.0258 -0.0796 6.6242 1.1718 -6.4382 -3.1629 -2.5142 0.0887

STD 0.0566 2.1353 1.5307 0.8933 5.2741 4.0886 0.8087 0.2748 0.3977 2.7035
AC(1) 0.1092 0.9774 0.9268 0.9089 0.9930 0.8562 0.6812 0.9747 0.9856 0.8691

United States: 1958:01-2005:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0044 1.6348 0.0000 0.0126 4.0387 3.0665 -6.6934 -3.5011 -2.7798 -0.1089

STD 0.0423 1.4360 1.1069 0.6257 2.7614 4.8664 0.8540 0.3962 0.3923 3.0940
AC(1) 0.0282 0.9493 0.9000 0.8764 0.9936 0.9609 0.8188 0.9920 0.9926 0.9637

The table reports summary statistics of (log) market excess returns (EXRET) and predictive vari-
ables in five international stock markets. MEAN, STD, AC(1) denote the mean, standard deviation
and first-order autocorrelation coefficient respectively. The set of predictors comprises the term
spread (TRM), the short-term interest rate relative to its 12-month moving average (RTB), a long-
term government bond yield relative to its 12-month moving average (RBR), annual inflation rate
(INF), annual growth of industrial production (IPG), (log) realized volatility (LRV), (log) dividend
yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 7: Sensitivity, Hyperparameter Expected Model Size

Monthly Quarterly

π 0.222 0.444 0.667 0.889 0.222 0.444 0.667 0.889

Panel A: France

TRM 0.033 0.080 0.167 0.376 0.036 0.085 0.167 0.362
RTB 0.042 0.066 0.112 0.282 0.064 0.103 0.170 0.359
RBR 0.743 0.819 0.857 0.908 0.641 0.745 0.805 0.878
INF 0.017 0.043 0.098 0.299 0.021 0.054 0.122 0.348
IPG 0.017 0.049 0.125 0.422 0.030 0.069 0.145 0.383
LRV 0.042 0.113 0.250 0.597 0.031 0.082 0.182 0.475
LDY 0.003 0.004 0.005 0.006 0.015 0.020 0.027 0.055
LEY 0.003 0.004 0.006 0.008 0.018 0.033 0.056 0.107
GAP 0.116 0.174 0.280 0.592 0.129 0.194 0.291 0.538

Panel B: Germany

TRM 0.029 0.070 0.139 0.324 0.038 0.090 0.175 0.362
RTB 0.025 0.057 0.109 0.283 0.043 0.087 0.164 0.380
RBR 0.188 0.358 0.529 0.763 0.467 0.649 0.770 0.902
INF 0.015 0.039 0.088 0.241 0.026 0.069 0.155 0.419
IPG 0.017 0.047 0.110 0.344 0.031 0.085 0.204 0.552
LRV 0.021 0.054 0.115 0.271 0.039 0.098 0.198 0.418
LDY 0.005 0.010 0.017 0.033 0.007 0.011 0.014 0.024
LEY 0.013 0.033 0.069 0.171 0.027 0.063 0.124 0.275
GAP 0.089 0.182 0.300 0.553 0.144 0.255 0.413 0.731

Panel C: Japan

TRM 0.015 0.039 0.091 0.287 0.023 0.062 0.142 0.395
RTB 0.055 0.093 0.142 0.308 0.035 0.080 0.157 0.390
RBR 0.192 0.307 0.410 0.616 0.048 0.102 0.189 0.452
INF 0.030 0.071 0.147 0.391 0.026 0.067 0.145 0.372
IPG 0.023 0.072 0.174 0.473 0.041 0.125 0.287 0.651
LRV 0.022 0.062 0.145 0.399 0.025 0.065 0.134 0.295
LDY 0.003 0.004 0.006 0.008 0.017 0.029 0.039 0.071
LEY 0.005 0.008 0.011 0.009 0.020 0.032 0.036 0.044
GAP 0.256 0.419 0.572 0.804 0.309 0.535 0.718 0.890

Panel D: UK

TRM 0.017 0.043 0.094 0.266 0.029 0.071 0.155 0.460
RTB 0.014 0.035 0.085 0.298 0.018 0.043 0.102 0.402
RBR 0.026 0.061 0.126 0.346 0.026 0.066 0.152 0.476
INF 0.016 0.041 0.094 0.300 0.023 0.052 0.112 0.356
IPG 0.021 0.071 0.184 0.506 0.023 0.061 0.139 0.401
LRV 0.021 0.052 0.111 0.310 0.033 0.091 0.199 0.470
LDY 0.203 0.347 0.438 0.453 0.559 0.704 0.782 0.886
LEY 0.043 0.073 0.090 0.098 0.083 0.109 0.131 0.222
GAP 0.073 0.149 0.255 0.488 0.041 0.059 0.086 0.236

Panel E: US

TRM 0.014 0.036 0.081 0.238 0.022 0.058 0.132 0.336
RTB 0.025 0.048 0.098 0.260 0.025 0.059 0.129 0.330
RBR 0.302 0.399 0.438 0.567 0.060 0.133 0.264 0.518
INF 0.086 0.349 0.684 0.928 0.011 0.037 0.123 0.429
IPG 0.059 0.208 0.389 0.570 0.028 0.061 0.121 0.277
LRV 0.010 0.028 0.059 0.113 0.067 0.171 0.364 0.750
LDY 0.030 0.088 0.207 0.501 0.001 0.001 0.002 0.011
LEY 0.117 0.415 0.754 0.957 0.006 0.019 0.069 0.230
GAP 0.805 0.734 0.663 0.722 0.938 0.956 0.964 0.982

The table contains detailed results on the sensitivity of estimation results with respect to the choice of the expected model
size. For different prior probabilities of inclusion π corresponding to model sizes with 2, 4, 6 and 8 variables the posterior
probabilities of inclusion are reported. The predictors include the term spread (TRM), the short-term interest rate relative
to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR),
annual inflation rate (INF), annual growth of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield
(LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 8: Estimation Results: Out-of-sample, Monthly
Panel A: France

BACE-adj BMA TOP All AIC BIC R̄2

ME 0.0010 0.0014 0.0015 -0.0050 -0.0012 0.0015 -0.0035
t-stat 0.2845 0.4114 0.4190 -1.4247 -0.3421 0.4314 -1.0058
TU 0.9947 0.9959 0.9993 1.0025 1.0019 0.9986 1.0035
Hit 0.5978 0.5941 0.5646 0.5830 0.5535 0.5720 0.5720
PT 1.0524 0.9375 0.3858 0.9105 0.3264 0.6230 0.6579

Panel B: Germany

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0003 -0.0003 -0.0003 -0.0040 -0.0017 -0.0003 -0.0039
t-stat -0.0693 -0.0837 -0.0883 -1.0591 -0.4659 -0.0924 -1.0324
TU 1.0034 1.0038 1.0087 1.0278 1.0221 1.0085 1.0309
Hit 0.5221 0.5181 0.5100 0.5542 0.4940 0.5100 0.5221
PT -0.6551 -0.7653 -0.6806 0.8108 -1.0818 -0.6806 -0.2041

Panel C: Japan

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0010 -0.0013 -0.0021 -0.0011 -0.0029 -0.0021 -0.0011
t-stat -0.2827 -0.3769 -0.5894 -0.3138 -0.8317 -0.6030 -0.3255
TU 1.0034 1.0047 1.0034 1.0095 1.0095 1.0038 1.0054
Hit 0.5257 0.5257 0.5037 0.4853 0.5037 0.5037 0.5257
PT -0.1541 -0.1541 -0.5811 -0.9397 -0.4146 -0.5811 0.4359

Panel D: UK

BACE-adj BMA TOP All AIC BIC R̄2

ME 0.0023 0.0047 0.0083 0.0112 0.0104 0.0083 0.0114
t-stat 0.8009 1.6394 2.8486 3.8104 3.5598 2.8549 3.8779
TU 1.0032 1.0093 1.0287 1.0517 1.0390 1.0289 1.0495
Hit 0.5678 0.4396 0.4322 0.4542 0.4359 0.4322 0.4322
PT 0.0810 -2.0820 -0.9730 0.0165 -0.5822 -0.9730 -0.5855

Panel E: US

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0005 -0.0005 0.0007 -0.0009 0.0006 0.0007 -0.0003
t-stat -0.2439 -0.2472 0.3159 -0.4444 0.2806 0.3149 -0.1522
TU 1.0010 1.0009 1.0129 1.0118 1.0065 1.0115 1.0117
Hit 0.5507 0.5485 0.5088 0.5220 0.4934 0.5066 0.5132
PT 0.6817 0.6526 -0.2493 0.0433 -0.8345 -0.3297 -0.1500

The table reports evaluation results of out-of-sample performance of different predictive
models (monthly data). After 10 years of initialization, the models are estimated recur-
sively. BACE-adj uses the forecasts of the weighted model whose coefficients are adjusted
for finite-sample bias. BMA is based on a pure Bayesian model averaging framework with
a g-prior specification. TOP denotes the forecast by the model specification which receives
the highest posterior model probability according to BMA. ALL is the all-inclusive spec-
ification. AIC, BIC, R̄2 are based on the best models selected by the Akaike, Schwarz
criterion or adjusted R2, respectively. ME denotes the mean prediction error (t-statistic
reported below). TU is the ratio of the root mean square error of the particular model-
based forecast to the one of the naive benchmark model. Hit denotes the fraction of times
the direction of the dependent variable is correctly predicted by the model. PT denotes
the test-statistic for directional accuracy by Pesaran and Timmermann (1992).
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Figure B.1: Net-SSE Plots, Quarterly

(a) France (b) Germany

(c) Japan (d) United Kingdom

(e) United States

The figure shows Net-SSE plots for the aggregate stock market following ?. Net-SSE is the cumu-
lated difference of squared forecast errors of the unconditional benchmark model (i.i.d. model) and
the conditional model (BACE-adj): Net-SSE(τ) =

∑τ
t=1(e

2
uc,t − e2

c,t), where euc,t is the forecast error
of the unconditional benchmark, and ec,t is the error of the conditional model. A decrease of the
slope represents a better forecast performance of the unconditional model at the particular point in
time.
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Table B.1: Estimation Results: Out-of-sample, Quarterly
Panel A: France

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0007 0.0045 0.0055 -0.0198 -0.0083 0.0029 -0.0131
t-stat -0.0608 0.3652 0.4345 -1.6140 -0.6705 0.2270 -1.0596
TU 0.9864 0.9914 1.0158 1.0020 1.0054 1.0173 1.0060
Hit 0.7416 0.6966 0.6517 0.7079 0.7303 0.6629 0.6966
PT 0.6404 0.1086 0.1834 0.6767 1.1980 0.2841 0.7432

Panel B: Germany

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0021 -0.0016 0.0026 -0.0090 -0.0016 0.0036 -0.0055
t-stat -0.1628 -0.1235 0.1933 -0.6634 -0.1179 0.2764 -0.4104
TU 1.0004 1.0012 1.0031 1.0343 1.0032 0.9985 1.0192
Hit 0.5926 0.5926 0.5679 0.6420 0.6296 0.5432 0.6173
PT 0.1036 0.1036 0.7742 1.6455 1.8985 0.5957 1.4920

Panel C: Japan

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0077 -0.0078 -0.0071 -0.0104 -0.0087 -0.0068 -0.0071
t-stat -0.6123 -0.6179 -0.5535 -0.8190 -0.6875 -0.5282 -0.5553
TU 1.0040 1.0053 1.0210 1.0197 1.0106 1.0270 1.0188
Hit 0.5955 0.6067 0.5955 0.4944 0.6180 0.5955 0.5618
PT -0.2404 -0.1190 -0.2404 -1.1983 0.7746 -0.2404 0.0810

Panel D: UK

BACE-adj BMA TOP All AIC BIC R̄2

ME 0.0081 0.0171 0.0300 0.0273 0.0271 0.0310 0.0261
t-stat 0.8604 1.8151 3.1203 2.6937 2.7411 3.1558 2.6423
TU 1.0092 1.0260 1.0839 1.1266 1.1010 1.1075 1.0970
Hit 0.7191 0.5955 0.5056 0.5281 0.5056 0.4944 0.5169
PT 0.0000 -0.1719 0.8151 1.0346 0.6477 0.7056 0.7572

Panel E: US

BACE-adj BMA TOP All AIC BIC R̄2

ME -0.0003 0.0013 0.0025 -0.0026 0.0035 0.0036 0.0017
t-stat -0.0430 0.1880 0.3643 -0.3642 0.5132 0.5137 0.2491
TU 1.0252 1.0233 1.0307 1.0453 1.0155 1.0285 1.0287
Hit 0.6333 0.5933 0.5867 0.5600 0.5933 0.5933 0.5867
PT 0.2928 -0.4239 0.2397 -0.5101 1.0035 0.5237 0.4235

The table reports evaluation results of out-of-sample performance of different predictive
models (quarterly data). After 10 years of initialization, the models are estimated recur-
sively. BACE-adj uses the forecasts of the weighted model whose coefficients are adjusted
for finite-sample bias. BMA is based on a pure Bayesian model averaging framework with
a g-prior specification. TOP denotes the forecast by the model specification which receives
the highest posterior model probability according to BMA. ALL is the all-inclusive spec-
ification. AIC, BIC, R̄2 are based on the best models selected by the Akaike, Schwarz
criterion or adjusted R2, respectively. ME denotes the mean prediction error (t-statistic
reported below). TU is the ratio of the root mean square error of the particular model-
based forecast to the one of the naive benchmark model. Hit denotes the fraction of times
the direction of the dependent variable is correctly predicted by the model. PT denotes
the test-statistic for directional accuracy by Pesaran and Timmermann (1992).
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