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Abstract

A firm’s current leverage ratio is one of the core characteristics of credit qual-
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literature which shows that leverage is mean reverting to a target leverage we fore-
cast future leverage ratios and include them in the set of default risk drivers. The
analysis is done with a discrete duration model. Out-of-sample analysis of default
events two to five years ahead reveals that the discriminating power of the duration
model increases substantially when leverage forecasts are included. We further doc-
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variables but that this information is unrelated to forecasts of leverage ratios.
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1 Introduction

Many observations suggest that firms follow leverage targets. A survey of chief financial
officers conducted by Graham and Harvey (2001) reveals that the majority of firms has
a target debt-equity ratio. Among others, Fama and French (2002), Leary and Roberts
(2005) and Flannery and Rangan (2006) document that empirical leverage ratios are
mean reverting. Estimation is usually based on a partial adjustment model in which
the optimal capital structure depends on a set of firm characteristics. The results differ
regarding the speed of adjustment and the relative importance of targeting behavior,
but the finding that firms actively rebalance capital structure in order to close the gap
between the current and the targeted leverage appears robust. The results are consistent
with the trade-off theory of capital structure in which firms balance the costs and benefits
of debt to determine an optimal leverage ratio. Rival theories include the pecking order
theory (Myers (1984)) and the market timing theory (Baker and Wurgler (2002)).

If firms follow leverage targets then future leverage ratios should be predictable. In this
paper, we examine whether such predictability can be exploited to improve the accuracy
of statistical default prediction models. In such models, future defaults are explained
with a set of variables including accounting ratios and stock market information. A
variable that measures a firm’s current leverage is usually included and found to have
significant explanatory power.

Our analysis uses two approaches. In a reduced-form approach, we simply extend
default risk drives by firm characteristics used to model targeted leverage ratios. In a two-
step approach, forecasts for future leverage ratios are derived from a partial adjustment
equation in the first step. We then extend a standard default prediction model by a new
variable that incorporates these forecasts.

For the two-step approach we find that the accuracy of default prediction can increase
significantly when modeling the dynamics of leverage. The added value from incorporat-
ing leverage dynamics increases if we extend the length of the default prediction horizon
from one to five years. This is consistent with the empirical finding that it takes several
years to close the gap between the current and the target leverage ratio.1 Our results
should help improve default prediction models, which are essential ingredients to risk
management and pricing in many financial institutions. The results also add a new
argument to the discussion of the empirical relevance of leverage-targeting behavior. It
would be difficult to maintain the interpretation that targeting behavior is relevant if it
were irrelevant in a setting such as default prediction where leverage plays a crucial role.

While statistical default prediction models are commonly used in practice, capital
market participants also rely heavily on credit ratings issued by rating agencies such as
Fitch, Moody’s or Standard & Poor’s. According to rating agencies, these ratings have
a long-term horizon and are not only based on a firm’s current situation but also on
projections of its future situation. According to Moody’s, for instance, “credit ratings
are ordinal measures of through-the-cycle expected loss. As such, while they are certainly

1 The half-life of deviations from optimal capital structure is five years in Fama and French (2002) and
two years in Flannery and Rangan (2006).
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based on the current financial strength of the issuer, they incorporate expectations of
future performance as well” (Metz and Cantor (2006)). It therefore seems interesting to
examine whether rating analysts incorporate information about the dynamics of leverage
ratios. If we include the rating as a predictive variable in our default prediction model
we find that it is significant but does not affect the significance of the variable that
captures leverage dynamics. Thus, while ratings contain valuable information for default
prediction, this information is largely unrelated to the leverage predictions that can be
derived from the targeting behavior of firms.

Our research combines approaches from two areas: the capital structure literature
introduced above and the literature on default prediction. In the latter, a firm’s forward
default probability within a given time horizon conditional on survival until the beginning
of that horizon is modeled as a function of firm specific covariates such as leverage,
profitability or liquidity. Some studies additionally include industry or economy-wide
factors. Most recent contributions employ discrete duration models or, equivalently,
multi-period logit models. They include Shumway (2001), Chava and Jarrow (2004),
Hillegeist et al. (2004), Beaver et al. (2004) and Campbell et al. (2006). Often, these
studies choose a one-year horizon for default prediction but longer horizons are also used,
e.g. in Campbell et al. (2006).

The two papers which are closest to ours are Duffie et al. (2006) and Lo et al.
(2008). Both model the dynamics of leverage through time series models inspired by
the pricing model of Collin-Dufresne and Goldstein (2001). Model parameters such as
target leverage or speed of adjustment are either estimated within a first-order vector
autoregressive time series model (Duffie et al. (2006)) or directly taken from the capital
structure literature (Lo et al. (2008)). Both studies conclude that modeling the dynamics
of leverage increases prediction accuracy. The key difference to our approach is that
we model target leverage through a set of firm-specific variables as suggested by the
literature on capital structure.

The rest of the paper is organized as follows. In Section 2 we outline the statistical
methodology for default analysis as well as the partial adjustment model. We also de-
scribe our approach for incorporating leverage dynamics into default prediction. Section
3 describes the data. Econometric issues relevant for the partial adjustment model are
discussed in Section 4. The main results are reported in Section 5. Section 6 exam-
ines whether credit ratings incorporate information on mean reverting leverage ratios.
Section 7 concludes.

2 Methodology

We begin with an overview on the discrete duration model for default analysis. This
is followed by a short introduction to the partial adjustment model and its uses for
forecasting leverage ratios.
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2.1 Default Analysis

2.1.1 Single-Period Default Prediction

We use a discrete duration model. At time t, a firm’s conditional probability of default
within the next year given the firm’s current condition and survival until the beginning
of year t is expressed by a discrete hazard function h(t):

h(t) = P (Yt,t+1 = 1|Yt−1,t = 0, Xt),

where the vector Xt captures the firm’s current condition and the binary variable Yt,t+1

indicates default in the time interval (t, t+ 1], i.e.

Yt,t+1 =

{
1 if default occurs in (t, t+ 1]
0 else.

It has been pointed out by Shumway (2001) and also shown by Allison (1982) and
Jenkins (1995) that a discrete duration model is equivalent to a multi-period logit model
estimated on a panel data set if the hazard function is specified as

h(t) =
1

1 + exp(−α(t)− β′Xt)
.

Consequently, the maximum likelihood function is identical to the one of a binary logistic
regression and coefficient estimates can easily be obtained using standard statistical
software. In our analysis, we adopt the above specification of the hazard rate, since it
has widely been used in the present literature. Among others it has been applied by
Shumway (2001), Chava and Jarrow (2004), Hillegeist et al. (2004) and Campbell et al.
(2006).

A question that needs to be addressed here is the specification of the baseline hazard
function α(t). In a qualitative response model the probability of default is modeled as

P (Yt,t+1 = 1|Yt−1,t = 0, Xt) =
1

1 + exp(−α− β′Xt)
. (1)

This implies that the baseline hazard function is constant over time (α(t) = α, ∀t) which
is equivalent to the hypothesis of duration independence in the data. In other words, risk
of default is assumed as being independent to the length of time a firm did exist (survive)
before default analysis. Yet, if there is duration dependence in the data, the baseline
hazard rate should be modeled by an appropriate function in t or, as suggested by Beck
et al. (1998), by including temporal dummy variables αt that index the length of a spell
for each firm.2 Beck et al. (1998) indicate that adding temporal dummy variables when

2 Shumway (2001) controls for duration dependence by specifying α(t) = ln(age), with age being the
number of years a firm has been listed on the particular stock exchange, but finds this variable
insignificant. Hillegeist et al. (2004) approximate α(t) by the mean rate of defaults twelve months
prior to t. This however only captures economy wide influences, and does not control for duration
dependence.
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they are not required might introduce unnecessary multicollinearity and hence lead to
incorrectly estimated standard errors. A likelihood ratio test is applicable for the null
hypothesis of duration independence (i.e. αt = 0, ∀t). If the null is rejected, all temporal
dummy variables are to be included in the hazard rate model. For the sample used in our
analysis, the null hypotheses cannot be rejected. We therefore specify the probability of
default as in equation (1). Detailed results are presented in Section 5.

2.1.2 Multi-Period Default Prediction

So far we have only considered default prediction one period ahead providing an answer
to the question “What is the probability of a firm to default within the next year if
we observe today’s covariates?”. The methodology illustrated in the previous section
is not restricted to single-period default prediction. For default events multiple periods
ahead we consider what we will call discrete multi-period default probability, meaning
that the focus at time t is on the estimation of default probabilities within a one-period
time frame k periods from t. In other words, the question addressed here is “What is
the probability of default between year t + k and t + k + 1 given today’s covariates?”.
Again this question is only reasonable for individuals that did not default prior to t+ k.
Discrete multi-period default probabilities are essentially lagged single-period default
probabilities, i.e.

h(t+ k) = P (Yt+k,t+k+1 = 1|Yt+k−1,t+k = 0, Xt)

=
1

1 + exp(−αk − β′kXt)
. (2)

Hereby we explicitly allow the coefficients β and α to vary with the prediction horizon.
From another point of view default prediction multiple periods ahead is a cumulative

one. In such a setting the length of one period is enlarged. An analyst might prefer this
perception if she is interested in the probability that a firm will default within the next
k years, i.e. in the time span (t, t+ k], conditioning only on Xt and survival until year t:

P (Yt,t+k = 1|Yt−1,t = 0, Xt).

We refer to this measure as cumulative multi-period default probability. As pointed out
by Campbell et al. (2006) this distribution is no longer logit if we assume that discrete
default probabilities follow a logistic distribution. By the Bayesian rule a cumulative
multi-period default probability can be deduced from discrete default probabilities via:

P (Yt,t+k = 1|Yt−1,t = 0, Xt) = 1−
k−1∏
j=1

(1− h(t+ j)).

In the present paper, however, we restrict the analysis to discrete default probabilities.
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2.2 Mean Reverting Leverage Ratios

Empirical literature on capital structure has widely analyzed the pecking order theory
versus the alternative trade-off model. Various studies provide evidence for the hypoth-
esis that leverage is mean reverting, cf. Shyam-Sunder and Myers (1999), Howakimian
et al. (2001), Fama and French (2002) and most recently Flannery and Rangan (2006).
In this context the dynamics of leverage is described by a partial adjustment model:

Lt+1 − Lt = a0 + a1(L∗t+1 − Lt) + εt, (3)

where Lt denotes the leverage ratio observed at time t and L∗t+1 is an optimal and
hence targeted leverage ratio for the next period. According to the partial adjustment
hypothesis, each year a firm closes a fraction of a1 of the gap between its actual and
desired future leverage level. The targeted leverage ratio is the optimal value that sets
off the benefits of interest tax shields against the costs of financial distress. Following
Flannery and Rangan (2006) the adjustment speed factor a1 is modeled constant over
time and individuals, representing an average firm’s adjustment speed.3

The major difficulty inherent in the partial adjustment model is the fact that L∗ cannot
be observed at any time and the researcher faces the question of finding an adequate
approximate value for this variable.4 Howakimian et al. (2001) and Fama and French
(2002) model the targeted leverage ratio as a linear combination of observable covariates,
i.e.

L∗t+1 = b0 + b′1Ct + εt, (4)

with Ct being a vector of firm specific characteristics observable at time t. With an
appropriate approximate value for L∗t+1 at hand, estimation of future leverage ratios
becomes feasible after rearranging equation (3) to

Lt+1 = a0 + a1L
∗
t+1 + (1− a1)Lt + εt. (5)

The estimate L̂t+1 can then be incorporated into the default prediction process; we will
expose this strategy in more detail in Section 2.3.

2.2.1 Forecasting Leverage Ratios One Period Ahead

Forecasts about future leverage ratios can be determined in a two-step procedure (Fama
and French (2002)). In a first step an estimate of the optimal leverage ratio is obtained
from regression (4), where for estimation purposes L∗t+1 is approximated by the future
leverage ratio:

Lt+1 = b0 + b′1Ct + εt.

The optimal leverage level in equation (5) can then be replaced by the predicted value
L̂t+1. Alternatively, as has been described in Flannery and Rangan (2006), a simultane-
ous estimation of equations (4) and (5) is feasible. Replacing the targeted leverage ratio

3 We well consider modifications of this assumption in Section 5.3.
4 A rather simple proxy is the historic mean leverage ratio for a firm or within the respective industry,

as used by Shyam-Sunder and Myers (1999).
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in (5) by the assumed relation from (4) results in

Lt+1 = a0 + a1b0 + a1b
′
1Ct + (1− a1)Lt + εt

= c0 + c′1Ct + c2Lt + εt, (6)

with c0 = a0 +a1b0, c
′
1 = a1b

′
1 and c2 = (1−a1). In unreported results we find that there

are only minor differences in estimation outcomes from the simultaneous or the two-step
approach. We prefer the simultaneous estimation due to the intuition that results are
less influenced by estimation errors and hence would yield more accurate forecasts.

2.2.2 Forecasting Leverage Ratios Multiple Periods Ahead

From the partial adjustment model it is straightforward to obtain estimates for leverage
ratios one period ahead, as is shown in equation (6). In order to extend the approach
to further horizons, we modify the partial adjustment model with respect to the length
of the time period. At time t, we consider the adjustment to the desired leverage ratio
in k years, where the target is set to be the optimal leverage ratio k years ahead given
today’s firm characteristics. More precisely, an estimate of the targeted leverage ratio
at time t + k can be found by regressing the respective observed future values on the
vector of explanatory variables, i.e.

Lt+k = b0 + b′1Ct + εt.

For each horizon k, future leverage ratios can then be estimated through:

Lt+k = a0 + a1L̂t+k + (1− a1)Lt + εt,

or simultaneously through:

Lt+k = c0 + c′1Ct + c2Lt + εt. (7)

2.3 Incorporating Leverage Dynamics Into Default Prediction

A central question of this paper is whether and to what extent results on the dynamics
of capital structure are of benefit in default analysis, in particular for an assessment
of long-term credit worthiness. Leverage is one of the key determinants of default risk
(cf. Beaver et al. (2004)), and predictive knowledge about leverage should help improve
default prediction.

Future leverage ratios can be estimated based on the present leverage ratio Lt and a
set of firm specific covariates Ct (cf. equation (7)). This implies that the information
on dynamics of leverage can be incorporated into default prediction by extending the
vector of covariates to

Ut = (Xt, Ct, Lt).

We will call this the reduced-form approach. An alternative is to first predict future
leverage ratios L̂t+k and then include those in the set of explanatory variables in a
two-step approach.

7



For each prediction horizon k the reduced-form approach would yield:

P (Yt+k,t+k+1 = 1|Yt+k−1,t+k = 0, Xt, Ct, Lt)

=
1

1 + exp(−αk − β′kXt − c0 − c′1Ct − c2Lt)

=
1

1 + exp(−α̃k − β̃′kUt)
,

with α̃k and β̃k being the respective combined coefficients.
Within the two-step approach, we first estimate future leverage ratios via relation (7).5

In a second step, the base regression model (2) is augmented by including the following
explanatory variable to the vector of covariates:

dL̂t+k = (L̂t+k − Lt). (8)

The new variable dL̂t+k captures the dynamics of leverage since it predicts the change
from the most recently observed to the estimated future leverage ratio.6 In this sense,
we will refer to dL̂t+k as to the dynamic variable. For estimation at t+ k the vector of
covariates is defined as:

Zt+k = (Xt, dL̂t+k).

The two-step approach is a special case of the reduced-form approach. It imposes the
restriction that variables in the covariates vector Ct are weighted according to b′1Ct (cf.
equation (4)) as well as the restriction that predicted leverage ratios are bound by 0 and
1. Imposing restrictions in a regression model automatically leads to a deterioration of
the in-sample fit. The out-of-sample performance, however, could be improved through
the two-step approach if the restrictions turn out to be correct and thus increase the
precision of parameter estimates. We therefore examine both approaches.

The two models also differ in ease of interpretation. In the two-step approach the
effect of leverage dynamics on credit worthiness is straight-forward: a larger positive
difference dL̂t+k comes along with a higher future leverage ratio and should therefore
increase the probability of default. Consequently, we expect the regression coefficient of
the dynamic variable to have a positive sign. In the reduced-form approach, by contrast,
we have to interpret a set of coefficients and it would be difficult to assess the extent to
which estimated coefficients are in line with the partial adjustment hypothesis that is
the basis of our work.

In the two-step approach an additional comment needs to be made on the definition
of the covariates vector Zt+k if the horizon considered is larger than two years. For
default in the time interval (t + 1, t + 2] solely the estimated value dL̂t+1 is available

5 Leverage ratios are theoretically bound to the unit interval [0, 1]. For this reason, we set all forecasted
values that are negative or larger than 1 to this theoretical bounds.

6 One could also add L̂t+k, the prediction of the leverage ratio. The difference dL̂t+k is advantageous
as it contains the same information as L̂t+k and is more easily accessible in terms of interpretation.
Besides, the estimate L̂t+k is highly correlated with the current leverage ratio and by considering the
difference instead of the absolute value we reduce the problem of multicollinearity.
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as explanatory variable. This is not the case for longer horizons. E.g., for defaults
within (t+ 2, t+ 3] both dL̂t+1 and dL̂t+2 are at hand. In general, all estimated values
with forecasting horizon shorter than the targeted horizon are conceivable. Yet, we do
not consider this amplification. Estimated leverage ratios at consecutive points in time
are highly correlated, which again introduces the problem of multicollinearity. Thus,
for default prediction in (t + k, t + k + 1] the vector of firm specific covariates is only
extended by dL̂t+k.

3 Data and Definition of Variables

We perform our analysis on a dataset constructed by merging three sources: firm specific
accounting variables from the annual COMPUSTAT Database; market variables from
the Center for Research in Security Prices (CRSP) as well as credit rating and default
information from Moody’s Investor Service.

Moody’s database covers ratings and defaults for corporate bond issuers. The default
indicator in our analysis is based on Moody’s definition of default that includes missed or
delayed payments, bankruptcy and distressed exchange, see also Hamilton et al. (2006).
The state of default is not absorbing; a firm can recover and undergo multiple default
events. We include observations for firms with multiple default events only if the credit
rating prior to a recurrent default has been upgraded to at least “B2”.

We restrict our analysis to a set of US companies excluding financial firms (CRSP SIC
6000-6999) and regulated utilities (CRSP SIC 4000-4999) whose capital decisions are
subject to regulatory influence and hence might violate assumptions made in the capital
structure model. The final dataset contains 17580 firm-years with complete information,
1694 distinct firms with an average of 10.4 observation years per firm. We consider a
time range of 32 years, from 1974 to 2005. We begin the analysis as late as 1974 since
there are very few default events prior to this year. During the whole observation period
274 default events were recorded, with the majority of defaults occurring in the years
between 1997 and 2002.

3.1 Covariates For Default Analysis

In the literature there is no mutual consent on the right choice of covariates to be used for
the estimation of default probabilities. Altman (1968) suggests a set of accounting ratios
that is modified by Zmijewski (1984) and Ohlson (1980), among others. More recent
research relies on these basic definitions of accounting ratios introducing slight modifi-
cations, cf. Campbell et al. (2006). Furthermore, Shumway (2001) shows that market
variables measuring excess return and the stock’s volatility have additional predicting
power and can improve prediction accuracy substantially when added to accounting
ratios. This result is confirmed by Chava and Jarrow (2004).

Although being different in detail, the various accounting ratios can be grouped as
proxies for either leverage, profitability, liquidity or coverage; four main characteristics
that determine the quality of an obligor. For our analysis, we decided on the definition
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of each characteristic that shows best explanatory power in terms of significance when
compared to alternative proxies.

Leverage is measured as the ratio of total debt to the market value of total assets
(L=TD/MTA), with MTA being the sum of total debt and market capitalization, cf.
Campbell et al. (2006). Highly leveraged firms are theoretically at higher risk of default.
We proxy expected profitability by the ratio of earnings before interest and taxes to total
assets (EBIT/TA), as has been suggested by Altman (1968) and Fama and French (2002).
In general, more profitable firms are less likely to default. We observe that neither of the
alternative measures for liquidity (e.g. working capital to total assets or current assets
to current liabilities) is significant. For this reason, we exclude a proxy for liquidity from
the analysis. Similar to Blume et al. (1998) we quantify coverage by the ratio of earnings
before interest and taxes over interest expenses of the same period (EBIT/XINT). The
lower the ratio, the higher is the uncertainty that the company will satisfy its interest
expenses and meet its debt obligations.

In addition to the core characteristics of a firm’s credit-worthiness we include a mea-
sure of firm size along with a proxy for future investment opportunities as explanatory
variables. Similar to Shumway (2001), firm size (SIZE) is measured as the natural loga-
rithm of the ratio of a firm’s market capitalization to the capitalization of the S&P500.
Larger firms are suspected to be less exposed to default. We proxy future investment
opportunities by growth in assets (dTA = TAt−TAt−1

TAt
), cf. Fama and French (2002). The

corresponding coefficient is presumed to be positive.
As noted previously there is substantial evidence that market variables do improve

prediction accuracy. For this reason we enlarge the vector of covariates by the stock
return over the previous twelve months and the respective stock return volatility. Each
firm’s stock return (RET) over the previous twelve months is computed by cumulating
monthly returns. Distressed firms are expected to perceive falling stock prices. Such,
stock returns are associated to be negatively related to default. We define volatility
(VOLA) as the standard deviation of monthly stock returns over the previous twelve
months. We expect more volatile stocks to be an indicator for declining credit quality,
which should be confirmed by a positive coefficient estimate.

All accounting variables at lagged by six months to ensure availability at the start of
default prediction horizons. Furthermore, in order to mitigate the influence of outliers,
we winsorize all observed covariates, except SIZE and EBIT/XINT, at the 1% and 99%
quantiles. Taking the logarithm when measuring firm size already reduced the impact
of outliers. Interest coverage is truncated similar to the procedure suggested by Blume
et al. (1998): all observations with negative earnings are set to zero; all observations
with negative interest expenses are set to the maximum value of 5; all remaining values
are cut of at the maximum value of 5. The procedure results in a range of [0, 5] for
transformed coverage values.7

A summary of the included variables along with the respective COMPUSTAT items

7 Blume et al. (1998) point out that coverage is likely to have non-linear effects. Consequently, in a
logit model a change in values close to the mean of the distribution would have a larger impact on
the dependent variable than the same change in values close to the tails of the distribution.
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is provided in Panel A of Table 6 in the Appendix. Table 7 (Panel A) in the Appendix
reports the descriptive statistics of the data set.

3.2 Covariates For Leverage Forecasts

In line with the specification for default analysis leverage is measured as a firm’s mar-
ket debt ratio. For the vector Ct of covariates we consider a set of widely used firm
characteristics (cf. Rajan and Zingales (1995), Howakimian et al. (2001), Fama and
French (2002), Flannery and Rangan (2006)). These include profitability, firm size, non-
debt tax shields and tangibility as well as product uniqueness along with growth and
investment opportunities.8

More profitable firms have less leverage since firms with higher retained earnings are
more likely to use equity finance. On the other hand, the inverse relationship between
profitability and bankruptcy costs implies better debt conditions. Firm size has a positive
relation to leverage. Reasons might be lower default probability, less volatile earnings and
better access to the debt market. Non-debt tax shields are proxied by the proportion of
depreciation expense relative to total assets (XD/TA). Higher non-debt tax shields most
likely increase the preference for equity relative to debt financing. Tangibility is measured
by the ratio of fixed to total assets (FA/TA). Firms with a higher proportion of tangible
assets operate with higher leverage. Product uniqueness, measured by the proportion
of research and development expenses to total assets (R&D/TA), should be negatively
related to leverage. We proxy growth opportunities by the market-to-book ratio (MB);
firms with high expected future growth tend to have more equity. As in Flannery and
Rangan (2006) we also include a dummy variable indicating whether a firm does report
R&D expenses. Again growth in assets is used as a proxy for investments opportunities.9

In addition, following Flannery and Rangan (2006) we include the industry mean of
leverage (INDMEAN) in order to control for industry wide characteristics not captured
otherwise. For industry definitions we refer to Chava and Jarrow (2004).10

A detailed description of covariate definitions is provided in Panel B of Table 6 in the
Appendix. Table 7 (Panel B) in the Appendix reports the descriptive statistics of the
data set. Accounting variables are lagged by six months to ascertain availability and
outliers are removed through winsorization at the 1% and 99% quantiles.

4 Partial Adjustment Model - Econometric Issues

Estimation of the partial adjustment model is associated with three critical questions.
Firstly, panel data is in general subject to two sources of dependence: correlation of
residuals for a given year across firms and correlation of residuals for a given firm across

8 For consistency reasons, variables that approximate the same characteristics considered in the default
analysis are not redefined.

9 Fama and French (2002) include growth in assets to capture temporary movements in leverage away
from its target rather than as a direct determinant of target leverage.

10 A finer indexing of industry dummies as in Fama and French (1997) does not change the results
significantly.
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years. The first source is usually controlled for using time dummies, whereas cross-
sectional dependence is dealt with by including dummies for each firm (fixed effects or
within groups estimation), c.f. Peterson (2007). Secondly, the set of covariates includes
a lagged dependent variable, i.e. the most recently observed leverage ratio Lt. The
introduction of a lagged dependent variable comes along with the problem of endogeneity,
since Lt will be correlated with the error term. A standard approach in this case is a
two-step ordinary least squares regression with an instrumental variable that is highly
correlated with the endogenous covariate, but orthogonal to the error term.

If the set of covariates in a panel data regression includes a lagged dependent variable
the data structure is referred to as dynamic panel data. Several estimation techniques
have been suggested for dynamic panel data, in particular for samples where a large
number of individuals has been observed for a small number of time periods. A detailed
overview can be found in Baltagi (2003). However, the appropriate technique is not
always obvious and as pointed out by Bond (2002) the methodology of choice largely
depends on the characteristics of the data being analyzed. In this setting Bond (2002)
shows that OLS and the fixed effects estimates for the lagged dependent variable are
likely to be biased in opposite directions. Consequently, a reliable estimator should lie
in (or close) to the implied range. However, in our application we primarily focus on
accurate forecasts rather than on correct estimates of coefficients. Within the two-step
approach, we use forecasts of future leverage ratios as an independent covariate in the
default analysis in order to increase prediction accuracy. Thus, it is obvious that our
findings are sensitive to the results from the first-step regression, and poor forecasts
should be avoided.

Keeping this in mind, we compare several estimation methods and use the one that
performs best with respect to forecasting ability. More precisely, we consider within
groups estimation, instrumental variables regression with and without fixed effects and
Arellano and Bond’s (1991) GMM procedure.11 For the instrumental variables regression
we follow Flannery and Rangan (2006) who show that book debt ratio can serve as
an instrument for Lt. Book debt ratio is defined as the ratio of total debt to the
book value of total assets (whereas leverage is defined as the ratio of total debt to
the market value of total assets). We test the forecasting performance out-of-sample.
For this purpose we estimate the coefficients on a sample including the years 1985 to
1995. Future leverage ratios are estimated for years 1996 to 2000 and the forecasts are
compared with the observed values. Table 8 in the Appendix quantifies the performance
of alternative methods through the root mean squared error (RMSE). Each method
is applied to a forecasting period of one to four years. We observe smallest RMSE
values for instrumental variables regression without fixed effects. Second best performs
the GMM estimation suggested by Arellano and Bond (1991). The latter, however, is
computationally very expensive (using STATA’s xtabond2 procedure).

In line with this results we use instrumental variables regression without fixed effects
for leverage forecasts. All following inference will be based on this choice. Estimates for

11 The Arellano and Bond’s (1991) technique is implemented in STATA’s xtabond2 procedure described
in Roodman (2006).
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the partial adjustment model one to four periods ahead are presented in Table 9 in the
Appendix (we do not list coefficient estimates for time dummies). The coefficient for
the present leverage ratio quantifies one minus the average fraction of the gap between
the targeted and observed future leverage that is closed. For a one-year horizon this
is approximately 11% = (1 − 0.89) (Fama and French (2002) report a mean reversion
of 7%-10% for dividend payers and 15%-18% for non-payers per year). The estimated
adjustment speeds for two to four years are close to the theoretical values given the
observed one-year adjustment speed. E.g. the estimated two-year adjustment speed is
(1−0.80) = 0.2, whereas with a one-year adjustment speed of 0.11 the geometric decline
would result in (1− (1− 0.11)2) = 0.21.

5 Empirical Results

Our presentation of empirical results is structured in the following way. We first report
estimation results from the in-sample estimation for each of the considered models: base,
two-step dynamic and reduced-form dynamic. The respective prediction accuracies are
compared out-of-sample in Section 5.2.

5.1 In-Sample Estimation

5.1.1 Base Model

Results from the base model when estimating default probabilities one to five years ahead
are summarized in Table 1. We report robust standard errors adjusted for clustering on
firms and provide Mc-Faddens Pseudo-R2 as an indicator for the overall fit of the model
as well as the area under the Receiver Operating Characteristic (ROC) curve (AUC).12

Beforehand we have carried out a test for temporal dependence. The likelihood-ratio
test for the significance of temporal dummy variables indicates no temporal dependence
in the data. P-values for the likelihood-ratio tests are shown in the last row of Table 1.
On account of this result, we omit temporal dummies in all subsequent regressions.

For the one-year prediction horizon coefficient estimates for all covariates, but EBIT/TA,
carry the expected sign and show high significance. EBIT/TA has the right sign, but is
only marginally significant with a p-value of 0.082. For further horizons this covariate
remains insignificant. Other accounting ratios (L, EBIT/XINT and dTA) keep their
predictive power with longer horizons. Among the market variables only SIZE exhibits
long term explanatory power. Neither past returns, nor volatility can explain defaults
in the remote future. We find a rather rapid decline in the overall fit of the model, com-
paring the relatively high Pseudo-R2 value for a one-year horizon (Pseudo-R2 = 0.4012)
to the very small overall fit for the five-year horizon (Pseudo-R2 = 0.0718). A similar

12 The area under the ROC curve measures the discriminating power of a model; a value of AUC close to
the maximum of 1.0 corresponds to a perfect discrimination between defaulters and non-defaulters,
whereas a random decision would lead to a value of about 0.5. Another widely used measure for
prediction accuracy is the accuracy ratio (AR), which is the area under the CAP curve. However,
AR is a simple linear transformation of AUC: AR = 2AUC − 1.
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Prediction Horizon in Years
1 2 3 4 5

L 4.89*** 2.97*** 2.41*** 1.49** 0.99*
(0.53) (0.41) (0.39) (0.46) (0.48)

EBIT/TA -1.85 0.95 -0.24 1.86 2.23
(1.06) (1.16) (1.29) (1.48) (1.68)

EBIT/XINT -0.30** -0.33*** -0.19** -0.29** -0.31***
(0.10) (0.08) (0.07) (0.09) (0.09)

SIZE -0.18*** -0.20*** -0.19*** -0.22*** -0.21***
(0.05) (0.05) (0.05) (0.05) (0.06)

dTA 1.09** 1.13*** 1.12** 1.17* 1.37**
(0.39) (0.34) (0.40) (0.5) (0.45)

RET -1.67*** -0.65*** -0.29 -0.24 -0.11
(0.31) (0.18) (0.16) (0.19) (0.20)

VOLA 4.70*** 4.39*** 3.42** 0.66 0.33
(1.01) (1.11) (1.07) (1.36) (1.39)

Constant -9.05*** -7.53*** -7.08*** -6.47*** -6.12***
(0.54) (0.49) (0.44) (0.50) (0.53)

Firm-years 17580 15569 14614 13721 13232
Pseudo-R2 0.4012 0.2238 0.1398 0.0965 0.0718
AUC 0.9465 0.8809 0.8259 0.7856 0.7501
P-value 0.9309 0.8851 0.7358 0.3884 0.3030

Table 1: Base model: coefficient estimates for default probabilities one to five years
ahead. Standard errors are in parentheses. Stars indicate a significance level: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. P-values quantify the significance of temporal dummies.
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trend is observed for prediction accuracy, the area under the ROC curve reduces from
AUC1 = 0.9465 to AUC5 = 0.7501.

5.1.2 Two-step Dynamic Model

Table 2 presents coefficient estimates in the two-step dynamic model for default proba-
bilities two to five years ahead. For any of the considered horizons, the dynamic variable
has the right sign and exhibits high statistical significance; all p-values are smaller than
0.001.

The covariates EBIT/XINT, RET, VOLA and SIZE remain unaffected. There are only
minor changes in magnitude and negligible changes in significance for these variables after
inclusion of dL̂. The proxy for profitability remains insignificant. Only the covariate dTA
is affected. The coefficient estimate shows a loss of explanatory power and changes the
sign when combined with leverage forecasts. This might be due to the fact that dTA
is part of the covariates vector in the first step regression (i.e. Ct) that leads to the
leverage forecasts.

We further observe that adding the dynamic variable increases the overall fit of the
base model. For all horizons, values for the Pseudo-R2 and AUC of the two-step dynamic
model exceed the respective values of the base model. The best relative gain appears
for a prediction horizon of four years, with an increase from AUCBase = 0.7856 to
AUCTwo-Step = 0.8181.

5.1.3 Reduced-form Dynamic Model

Results for the reduced-form dynamic model are reported in Table 3. For the sake of
brevity we do not list coefficient estimates for time dummies. The model shows the
best overall fit and discriminatory power which is what we expect because it imposes
fewer restrictions than the other models. The improvement is pronounced. It is largest
at the five-year horizon. Discriminatory power increases from AUCBase = 0.7501 and
AUCTwo-Step = 0.7775 to AUCReduced-Form = 0.8366.

The last row of Table 3 reports p-values for the null hypothesis: Ct = 0, i.e. co-
variates from the partial adjustment model have no explanatory power.13 Applying the
likelihood ratio test the null hypothesis is rejected for all horizons which means that
in combination elements of the covariates vector Ct do contribute to default prediction.
Yet, when inspecting each covariate separately we find no significant coefficients (except
for R&D/TA). The low precision of the estimates indicates that imposing the restriction
Lt+k = b0+b′1Ct (as is done in the two-step dynamic model) might improve out-of-sample
performance.

13 We only consider covariates that are not part of the base model.
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Prediction Horizon in Years
2 3 4 5

L 4.33*** 5.09*** 4.78*** 4.13***
(0.49) (0.53) (0.66) (0.75)

dL̂1 12.66***
(2.24)

dL̂2 13.38***
(1.68)

dL̂3 11.82***
(1.58)

dL̂4 9.00***
(1.61)

EBIT/TA 0.58 -1.57 0.74 1.61
(1.18) (1.34) (1.61) (1.82)

EBIT/XINT -0.33*** -0.18* -0.27** -0.28**
(0.08) (0.08) (0.09) (0.09)

SIZE -0.14** -0.11* -0.14** -0.16**
(0.05) (0.05) (0.05) (0.06)

dTA 0.27 -0.16 -0.09 0.48
(0.36) (0.45) (0.53) (0.49)

RET -0.65*** -0.31 -0.27 -0.13
(0.19) (0.17) (0.21) (0.21)

VOLA 4.52*** 4.16*** 1.90 1.89
(1.14) (1.10) (1.41) (1.40)

Constant -7.52*** -7.37*** -7.05*** -6.94***
(0.48) (0.45) (0.52) (0.58)

Firm-years 15569 14614 13721 13232
Pseudo-R2 0.2361 0.1699 0.1279 0.0933
AUC 0.8885 0.851 0.8181 0.7775

Table 2: Two-step dynamic model: coefficient estimates for default probabilities two
to five years ahead. Standard errors are in parentheses. Stars indicate a significance level:
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.
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Prediction Horizon in Years
2 3 4 5

L 2.89*** 2.60*** 1.56** 1.37*
(0.49) (0.47) (0.56) (0.56)

EBIT/TA 0.65 -0.69 2.34 2.67
(1.31) (1.42) (1.80) (1.87)

EBIT/XINT -0.3*** -0.14 -0.25* -0.26**
(0.08) (0.08) (0.10) (0.10)

SIZE -0.20*** -0.17*** -0.17** -0.2**
(0.05) (0.05) (0.06) (0.06)

dTA 0.83* 0.70 0.85 1.18*
(0.35) (0.42) (0.51) (0.46)

RET -0.53** -0.30 -0.48* -0.13
0.20) (0.18) (0.22) (0.23)

VOLA 5.39*** 5.13*** 4.05* 3.93*
(1.32) (1.31) (1.72) (1.68)

XD/TA 2.73 -1.71 1.66 4.09
(3.51) (3.86) (4.41) (4.10)

FA/TA 0.16 -0.06 -0.51 -0.39
(0.43) (0.41) (0.44) (0.44)

R&D/TA -7.98* -6.54 -9.41* -7.88*
(3.59) (3.63) (4.05) (3.7)

R&D Dummy -0.14 -0.22 -0.28 -0.42*
(0.16) (0.17) (0.17) (0.18)

MB -0.10 -0.24 -0.32 -0.03
(0.25) (0.19) (0.23) (0.19)

INDMEAN 0.41 0.29 0.13 -0.88
(1.19) (1.31) (1.38) (1.58)

Constant -9.08*** -7.33*** -6.75*** -7.57***
(1.24) (0.94) (1.05) (1.35)

Firm-years 15569 14614 13721 13232
Pseudo-R2 0.2709 0.2049 0.1702 0.1453
AUC 0.9050 0.8771 0.8556 0.8366
P-Value <0.001 <0.001 <0.001 <0.001

Table 3: Reduced-form dynamic model: coefficient estimates for default probabil-
ities two to five years ahead. Standard errors are in parentheses. Stars indicate a sig-
nificance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. P-values quantify the simultaneous
significance of covariates from the partial adjustment equation.
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5.2 Out-of-Sample Analysis Of Prediction Accuracies

In-sample results presented in the previous section suggest that additional information
on future capital structure might actually lead to more accurate default prediction. At
this point an out-of-sample validation is needed to see the impact of the dynamic variable
in a realistic setting, where an analyst aims to predict default probabilities at a certain
point in time only having information up to this point.

We conduct the out-of-sample validation as follows. Given a certain validation year
t0, we first estimate coefficients on a sample consisting of observations of the previous
n years.14 This step is repeated ten times. For each iteration we shift the validation
year one year back, resulting in default probability estimates for ten validation years.
The choice of the starting validation year t0 depends on the prediction horizon. It is
the most recent year with a positive number of defaults, e.g. for horizon k = 2 we set
t0 = 2002, for horizon k = 3 we set t0 = 2001 and so on. The performance of the
competing models is again compared by means of the AUC. In order to have a sufficient
number of observations, the ROC curve is computed on the set of pooled probability
estimates for all validation years. Additionally, we apply the algorithm suggested by
DeLong et al. (1988) in order to test the null hypothesis of equality of areas under two
ROC curves.

We vary the number of years used to estimate coefficients from n = 8 to n = 13
years.15 The variable dL̂ in the dynamic model is obtained in a way which is consistent
with the out-of-sample methodology. The partial adjustment regression is estimated
only with data from the years that make up the estimation sample; to compute the
mean industry leverage ratio, which is an explanatory variable in this regression, we also
use only observations from the estimation sample.

In the out-of-sample analysis we compare prediction accuracies from the two dynamic
models to those of the base model. Tables 10 and 11 in the Appendix report the respec-
tive results in Panels A to F. Each panel represents an estimation sample; the validation
samples remain unchanged. We compute the relative increase in AUC values for both
dynamic models compared to the base model and report p-values for the null hypothesis
of equality of areas under two ROC curves. Additionally, a more concise presentation
of results is provided for each model separately, in Figure 1. We plot the AUC value
against the number of years in the estimation sample. For the dynamic models each
value is represented by stars, a circle or a cross. The symbols show the decision for the
null hypotheses. If there is a relative increase in the AUC value when compared to the
base model and the null hypothesis is rejected, stars indicate the significance level. If
the null hypothesis cannot be rejected at a significance level of 5%, the plot displays a
circle. A cross is used if we find a significant decrease in the AUC value.

The out-of-sample analysis exhibits two interesting facts. Firstly, we observe that the
absolute as well as the relative out-of-sample performance does depend on the number

14 More accurately, this technique should be referred to as out-of time validation.
15 For a fixed sample, the number of years available for estimation declines with the prediction horizon.

If the history covers n years, only n − (k − 1) years can be used for prediction or forecast k years
ahead.
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Figure 1: Out-of-sample prediction accuracies: prediction horizon of 2 to 5 years.
Number of years in the estimation samples ranges from 8 to 13. Stars indicate a sig-
nificance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001, circles indicate no significance for
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of years included in the estimation sample. For the two-step dynamic model a consistent
significant increase only shows for estimation samples that cover less then eleven years.
Secondly, we see that the increase in prediction accuracy for the reduced-form dynamic
model is much lower than that for the two-step dynamic model when compared to the
base model. Dynamics of leverage cannot be captured sufficiently by simply adding the
explanatory variables to the set of default risk drivers. The two-step procedure is clearly
more favorable even though there might be uncertainties about the right estimation
techniques for the partial adjustment model.

A separate inspection of the models reveals that in the base model AUC values increase
with the number of years covered by the estimation sample, whereas in the two-step
dynamic model AUC values first increase, reach a maximum for a history of ten years
and then decline (Figure 1, second subfigure). This effect appears for all prediction
horizons considered, but is more pronounced for default predictions four and five years
ahead. In the reduced-form dynamic model, a similar trend shows for the four and
five-year horizons.

How can these findings be explained? First, we will try to understand the trend
exhibited for the base model. Basically, we see that prediction accuracy increases if
the estimation sample becomes larger. In larger samples coefficient estimates are less
exposed to overfitting and thus will lead to more accurate predictions. Thus, the more
years are on hand for estimation, the better will the base model perform.

The poor performance of the base model for small estimation samples comes along
with a significant increase of prediction accuracy after adding the dynamic variable.
However, unlike to what we would expect, the dynamic model becomes less superior
the larger we choose the estimation sample until finally no improvement is noticeable.
We notice best improvement, both in terms of absolute increase in the AUC value and
statistical significance, for the nine and ten-year estimation samples. Why does this
effect grow weaker? The partial adjustment model assumes that the adjustment speed
factor as well as the linkage between firm characteristics and target leverage are constant
over time. In-sample, departures from this assumption are mitigated by time dummies.
Out-of-sample, they are not, and will therefore lead to a reduction in the precision of
leverage forecasts. A plot of the root mean squared errors for leverage forecasts presented
in Figure 5 in the Appendix supports this conjecture. We see a trend that is in line with
the pattern of the AUC values. The root mean squared errors are u-shaped with a
minimum for an estimation sample of ten years.

A convenient feature of the two-step procedure is that it separates default prediction
from leverage forecasts. Hence we can test the above assumption by combining different
estimation sample histories. More precisely, for histories up to 10 years, estimation
samples for leverage forecasts and default predictions cover the same number of years.
For longer histories, estimation samples for leverage forecasts are fixed to 10 years and
the number of years used for default prediction is varied from 11 to 13 years. We use
a history of at maximum 10 years in the first step of the dynamic model since here we
have observed the highest increase in the AUC. Results are shown in Figure 2 and Table
12 in the Appendix. The trend observed above is no longer present; prediction accuracy
does not decline for larger estimation samples. Moreover, we even observe significantly

20



8 9 10 11 12 13

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of years in the estimation sample

A
U

C

Two − step Dynamic Model: max. 10 years in the first step (with test against base model)                                          

 

 

2 Years 3 Years 4 Years 5 Years

******

***

**

***

***

***

*

** **

**

**

***

***

******

***

* **

**

***

***

Figure 2: Out-of-sample prediction accuracies: prediction horizon of 2 to 5 years.
Number of years in the estimation samples for default analysis ranges from 8 to 13.
Leverage forecasts are based on estimation samples covering at most 10 years. Stars
indicate a significance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001 and circles indicate no
significance for the null hypotheses of equality of areas under two ROC curves.

higher AUC values for the two-step dynamic model, where in previous computations
the two-step dynamic model has been inferior. The increase is moderate for a two-year
prediction horizon, ranging from 1.5% to 1.9%. Defaults three to five years ahead can
be predicted with much higher increase in accuracy; here the values improve by 3.6% to
6.1%.

Figure 3 exemplarily compares the AUC values given a prediction horizon of four
years. The base and the reduced-form dynamic model show lowest values for estimation
samples with a history of less respectively larger than 12 years. Best performance is
observed for the two-step dynamic model, restricted to a ten-year estimation sample in
the first step.

In essence, the rather poor out-of-sample performance of the reduced-form dynamic
model indicates that a simultaneous estimation of leverage dynamics and default prob-
abilities cannot capture the dynamics in leverage sufficiently. We observe a larger effect
for the two-step approach. An inclusion of the dynamic variable does improve prediction
accuracy significantly if out-of-sample forecasts of leverage ratios are based on estima-
tion samples covering at maximum the past ten years, even if a longer data history is
available. In particular, the two-step dynamic model is of benefit when historical data
available for default analysis is scarce.

5.3 Variations of the Two-Step Dynamic Model

So far we have estimated future leverage ratios under the assumption of a homogeneous
adjustment behavior for all firms. The coefficient a1 in equation (3) is the average ad-
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Figure 3: Out-of-sample prediction accuracies: comparison of the considered mod-
els at a prediction horizon of four years.

justment rate for a firm operating between 1974 and 2005. The simplifying assumption
of a constant adjustment rate has widely been used in the literature on capital struc-
ture. Only a few studies model the adjustment rate as firm specific and time varying
(Banerjee et. al (2000), Roberts (2002)).16 The analysis conducted by Roberts (2002)
concludes that a firm’s adjustment speed depends on its industry and financial health.
An immediate implication hereof is that accuracy of leverage forecasts (and hence the
accuracy of estimated default probabilities) might increase if the dynamic model allows
for differences in industry and financial health.

Within the two-step dynamic model one can adjust for differences in industry and
financial health when running the first step regression on industry or rating category
subsamples.17 We use the rating category as a proxy for financial health. In order to
ensure a sufficient sample size in each rating category, we aggregate Moody’s rating
classes into five categories (high = Aaa to Aa3, medium = A1 to Baa3, speculative =
Ba1 to B3, poor = Caa1 to C, and unrated). Industry subgroups are defined as in Chava
and Jarrow (2004), resulting in a total of eight industry classes.

For the in-sample results (not tabulated), we find that neither the significance nor the
magnitude of coefficient estimates in the default regression is affected when the first-step
regression is run on industry or rating category subsamples; values of the Pseudo-R2

and the AUC increase moderately. Out-of-sample prediction accuracy increases only
if the number of years used in the estimation sample is sufficiently large. Figure 4

16 In our analysis the out-of-sample results presented in Section 5.2 also suggest that the conjecture of
a constant adjustment speed factor is inadequate.

17 Alternatively one could include a proxy for industry characteristics (e.g. mean industry leverage ratio)
and financial health (e.g. present rating category) as independent variable in the partial adjustment
model. Our specification of the optimal leverage ratio does control for industry characteristics, yet
the proxy INDMEAN shows no explanatory power.
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Figure 4: Out-of-sample prediction accuracies: Comparison of out-of-sample AUC
values for variations of the two-step dynamic model at a prediction horizon of four years.

exemplarily compares the out-of sample performance for the modifications of the two-
step dynamic model for a prediction horizon of four years.18 Forecasting leverage based
on rating subsamples does consistently increase the AUC; using industry subsamples
leads to improvements only if at least 12 years are included in the estimation sample. The
improvement from using subsamples is relatively small compared to using the “optimal”
estimation sample in the first step regression. This can be seen in Figure 4 where for
comparison we also show AUC values for the two-step dynamic model in which we fix
the estimation sample in the first step to at maximum ten years.

Overall, the results show that refinements of the partial adjustment regression could
help to further improve default prediction. Improvements are not clear-cut though,
suggesting that the two-step dynamic model with its rather simplistic assumption of
homogeneous adjustment behavior is a good starting point for practical purposes.

6 Do Credit Ratings Capture the Dynamics of Leverage?

In the preceding section we have shown that additional information on the dynamics
of capital structure can significantly improve prediction accuracy of long-term default
probabilities. Credit ratings assigned by rating agencies such as Moody’s or Standard
& Poor’s also focus on the long term quality of an obligor’s debt. Fons et al. (2002)
state on Moody’s ratings: “[. . . ] credit ratings powerfully discriminate among relative
long-term risks. They target multiple horizons, rather than a single, defined investment
horizon.”. In other words, credit ratings are meant to be forward-looking with respect
to credit quality and the question arises whether such a forward-looking ability covers

18 A similar pattern is observed for all prediction horizons.
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leverage dynamics. If it does, adding credit rating information to the default regression
in the two-step dynamic model would make the dynamic leverage variable redundant.

We address this question by considering the following covariates in the default predic-
tion model:

(i) Zt+k = (Xt, dL̂t+k), i.e. two-step the dynamic model,

(ii) Vt = (Xt, RATt), i.e. the base model plus ratings,

(iii) Wt+k = (Xt, dL̂t+k, RATt), i.e. the two-step dynamic model plus ratings,

where RATt denotes the credit rating assigned by Moody’s at time t. We convert each of
the 21 rating categories to a numerical variable; 1 corresponds to rating class Aaa, 2 to
rating class Aa1, . . . , 21 corresponds to rating class C. A higher rating should therefore
be associated with a higher probability of default.

We first report in-sample coefficient estimates for discrete default probabilities two
to five years ahead when both the dynamic variable and credit rating are included as
covariates. The respective values are presented in Table 4. The number of complete
observations available for estimation declines after including RAT, due to lacking rating
information for some firm-years. When we compare coefficient estimates for the dynamic
model with and without inclusion of rating information (i.e. figures from Tables 2 and 4),
we find high additional explanatory power for the rating variable, which is also mirrored
in the increasing Pseudo-R2 values. Further we can observe that the inclusion of RAT
has almost no effect on the significance and magnitude of the dynamic variable. This
implies that dynamics in leverage are not captured by credit ratings.

Mutual significance of leverage and rating information can further be validated by
a comparison of the respective out-of-sample ROC areas. More precisely, we estimate
AUCs after default regression with covariates Zt+k, Vt and Wt+k and contrast all pairs.
As has been observed in Section 5.2 out-of-sample forecasts on capital structure are best
when based on an estimation sample including at most the preceding ten years. We
follow this rule for the out-of-sample comparison of prediction accuracies implied by the
models in question. Results are presented in Panels A to C of Table 5. In Panel A we
compare ROC areas for the pair (Zt+k, Vt), in Panel B for the pair (Wt+k, Vt) and in
Panel C for the pair (Wt+k, Zt+k).

We find the implication from coefficient estimates in Table 4 confirmed in all three
Panels. More precisely, Panel A shows that dL̂ is marginally superior compared to
RAT. Panel B suggests that adding the dynamic variable to the base model enlarged
by rating information significantly increases prediction accuracy (up to 9.5% for a five
years prediction horizon). In Panel C, we see that adding the rating information to the
dynamic model can also increase the AUC significantly, albeit only for horizons lager
than three years.

Summarizing, both coefficient estimates and the out-of-sample analysis of ROC curves
suggest that dynamics in leverage and rating are complementary in the sense that both
do carry exclusive information relevant for long term credit quality. Neither one can be
replaced by the other without loss of prediction accuracy.
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Prediction Horizon in Years
2 3 4 5

L 4.11*** 4.78*** 5.18*** 2.76***
(0.55) (0.56) (0.68) (0.72)

dL̂1 12.62***
(2.36)

dL̂2 13.54***
(1.71)

dL̂3 13.54***
(1.57)

dL̂4 4.93***
(1.35)

RAT 0.12** 0.19*** 0.22*** 0.13***
(0.04) (0.04) (0.04) (0.04)

EBIT/TA -0.21 -2.02 -1.57 1.21
(1.22) (1.33) (1.55) (1.76)

EBIT/XINT -0.25** -0.07 -0.06 -0.20*
(0.09) (0.08) (0.09) (0.1)

SIZE -0.10 0.02 0.03 -0.06
(0.06) (0.07) (0.07) (0.08)

dTA 0.48 -0.10 -0.32 0.79
(0.37) (0.45) (0.51) (0.48)

RET -0.71*** -0.44** -0.41 -0.35
(0.19) (0.17) (0.21) (0.21)

VOLA 3.53** 3.23** 0.15 -0.32
(1.23) (1.16) (1.55) (1.45)

Constant -8.38*** -8.28*** -8.2*** -7.06***
(0.54) (0.51) (0.61) (0.62)

Firm-years 13450 13225 13025 12854
Pseudo-R2 0.2528 0.1915 0.1591 0.0933
AUC 0.8952 0.8583 0.8124 0.7584

Table 4: Dynamic model enlarged by credit rating: coefficient esti-
mates for default probabilities two to five years ahead. Standard errors are in
parentheses. Stars indicate a significance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p <
0.001.
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Prediction Horizon in Years
2 3 4 5

Panel A
AUC Dynamic 0.8919 0.8513 0.7925 0.7245
AUC Rating 0.881 0.8256 0.7557 0.6903
Change in % 1.2 3.1 4.9 5.0
P-value 0.0835 0.0103 0.0451 0.0498

Panel B
AUC Dynamic and Rating 0.8944 0.8577 0.8124 0.7561
AUC Rating 0.881 0.8256 0.7557 0.6903
Change in % 1.5 3.9 7.5 9.5
P-value 0.006 <0.001 <0.001 <0.001

Panel C
AUC Dynamic and Rating 0.8944 0.8577 0.8124 0.7561
AUC Dynamic 0.8919 0.8513 0.7925 0.7245
Change in % 0.3 0.8 2.5 4.4
P-value 0.2098 0.1626 0.0144 0.0029
Firm-years 5627 5323 5054 4790

Table 5: Dynamic Variable vs. Credit Rating: out-of-sample prediction
accuracies. The p-value refers to the null hypotheses of equality of areas under
two ROC curves. The estimation sample covers a history of 10 years.
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7 Summary and Concluding Remarks

Empirical corporate finance research documents that firms actively rebalance their cap-
ital structure towards a target leverage ratio. The main question addressed in our paper
is whether this insight can be used to improve the prediction of corporate defaults. We
use two related econometric specifications. In both cases, a standard discrete hazard
rate model (our base model) is enriched by variables that capture the dynamics of lever-
age. In the reduced-form approach, we just add the variables that the capital structure
literature uses to model targeted leverage ratios. In the two-step approach, we augment
the base model by the predicted change in the leverage ratio; the prediction is obtained
from a first-step regression along the lines of partial adjustment model used in the capital
structure literature. The reduced-form approach nests the two-step approach.

In-sample, both approaches lead to significant improvements over the base model. The
reduced-form model performs best because it imposes the fewest restrictions. To judge
the usefulness of a default prediction model, however, it is crucial to conduct an out-of-
sample analysis. For the reduced-form dynamic model, we find no material increase in
predictive accuracy as measured by the area under the ROC curve and hence conclude
that dynamics in leverage cannot be captured by solely adding covariates from the partial
adjustment model to the set of risk drivers. For the two-step dynamic model, by con-
trast, a significant increase in prediction accuracy is observed. The restrictions imposed
through the partial adjustment model increase the precision of coefficient estimates and
thereby lead to better out-of-sample performance. The magnitude of this improvement
varies with the length of the sample used for estimating the partial adjustment equation.
We attribute this effect to non-stationarities in the speed of adjustment and the linkages
between firm characteristics and leverage targets. Specifically, the performance of the
dynamic model deteriorates if the estimation sample is longer than 10 years.

Standard default prediction models do not use information contained in credit ratings
but many market participants do. Given that rating agencies claim their ratings to be
forward looking we further ask whether credit ratings contain information about leverage
dynamics. We address this question by adding credit ratings to our default prediction
models. Including credit ratings improves predictive power but the contribution of the
leverage forecast is not affected. While rating analysts do appear to have a forward-
looking ability, this ability is unrelated to the predictability of leverage ratios that has
been documented in the corporate finance literature.

The paper could inspire other extensions of existing default prediction models. Until
now, specification of such models is largely based on a search for covariates that perform
better than the ones previously considered. The final regression equation is reduced-form
in the sense that it imposes no restrictions on variables (except for the commonly made
linearity restriction). Our analysis has shown that default prediction models can benefit
from imposing restrictions that are derived from other research areas, e.g. capital struc-
ture. Finally, the work contributes to the corporate finance literature since it shows that
it is important to model the leverage targeting behavior of firms. If we had obtained that
leverage forecasts from a partial adjustment equation are useless in default prediction,
this would have cast doubts on the empirical relevance of the trade-off theory.
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APPENDIX

Panel A - Default Prediction
Covariate Source CRSP/COMPUSTAT Item
Total Debt/Market Value of Total Assets CS;CRSP (CS9+CS34)/(CS9+CS34+MCAP)
(L=TD/MTA)
EBIT/Total Assets (EBIT/TA) CS (CS18+CS15+CS16)/CS6
EBIT/Interest Expense (EBIT/XINT) CS (CS18+CS15+CS16)/CS15
ln(MCAP/Cap. of S&P500) (SIZE) CRSP
Growth in Assets (dTA = TAt−TAt−1

TAt
) CS CS6

Return over the previous 12 months (RET) CRSP
Volatility of Returns CRSP
over the previous 12 months (VOLA)

Panel B - Leverage Forecast
Covariate Source CRSP/COMPUSTAT Item
Total Debt/Market Value of Total Assets CS;CRSP (CS9+CS34)/(CS9+CS34+MCAP)
(L=TD/MTA)
EBIT/Total Assets (EBIT/TA) CS (CS18+CS15+CS16)/CS6
ln(MCAP/Cap. of S&P500) (SIZE) CRSP
Growth in Assets (dTA = TAt−TAt−1

TAt
) CS CS6

Depreciation Expense/Total Assets CS CS14/CS6
(XD/TA)
Fixed Assets/Total Assets (FA/TA) CS CS8/CS6
R&D Expenses/Total Assets (R&D/TA) CS CS46/CS6
R&D Dummy CS CS46
Market-to-Book Ratio (MB) CS;CRSP (CS9+CS34+MCAP)/CS6
Mean Industry Leverage (INDMEAN) CS;CRSP (CS9+CS34)/(CS9+CS34+MCAP)

Table 6: Definition of Covariates: Panel A gives an overview of covariates used for
default prediction, Panel B lists variables that explain leverage levels. The CRSP item
“market capitalization” is defined as MCAP = price per share*shares outstanding.

28



Panel A - Default Prediction
Covariate Obs. Mean Std. Dev. Min. Max.
L = TD/MTA 17580 0.34 0.23 0 0.92
EBIT/TA 17580 0.09 0.09 -0.26 0.31
EBIT/XINT 17580 3.23 1.84 0.00 5.00
RET 17580 0.15 0.44 -0.73 1.89
VOLA 17580 0.11 0.06 0.04 0.34
dTA 17580 0.06 0.17 -0.62 0.56
SIZE 17580 -8.42 1.90 -15.81 -2.81

Panel B - Leverage Forecast
Covariate Obs. Mean Std. Dev. Min. Max.
L = TD/MTA 15770 0.33 0.22 0.00 0.92
EBIT/TA 15770 0.10 0.09 -0.26 0.31
MB 15770 1.26 0.89 0.37 5.7
XD/TA 15770 0.05 0.02 0.01 0.16
FA/TA 15770 0.35 0.20 0.02 0.89
R&D Dummy 15770 0.38 0.49 0 1
R&D/TA 15770 0.02 0.03 0.00 0.18
INDMEAN 15770 0.34 0.06 0.19 0.72
SIZE 15770 -8.32 1.86 -14.88 -2.81
dTA 15770 0.06 0.16 -0.62 0.56

Table 7: Descriptive statistics: Panel A summarizes variables used in default predic-
tion, Panel B describes the set of covariates explaining leverage levels.

Forecast Horizon in Years
1 2 3 4

Within Regression 0.162 0.244 0.277 0.271
IV Regression with Fixed Effects 0.159 0.242 0.276 0.271
IV Regression without Fixed Effects 0.123 0.161 0.177 0.197
Arellano and Bond’s (1991) GMM Procedure 0.126 0.163 0.187 0.205

Table 8: Leverage Forecasts: out-of-sample root mean squared errors for a variation
of estimation techniques applicable to the partial adjustment model.
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Forecast Horizon in Years
1 2 3 4

L 0.8927*** 0.8037*** 0.7337*** 0.6656***
(0.0085) (0.015) (0.0208) (0.0261)

EBIT/TA 0.0358* 0.0805*** 0.1057*** 0.1155**
(0.0152) (0.0221) (0.0286) (0.0351)

SIZE -0.0023** -0.0027* -0.0031 -0.0022
(0.0007) (0.0014) (0.002) (0.0025)

dTA 0.0462*** 0.0644*** 0.0731*** 0.0722***
(0.0071) (0.0097) (0.0123) (0.0138)

XD/TA -0.0719 -0.1908* -0.1713 -0.1722
(0.0491) (0.087) (0.1231) (0.1595)

FA/TA 0.0215*** 0.0391*** 0.041** 0.0494*
(0.0059) (0.0107) (0.0151) (0.0195)

R&D Dummy -0.0007 -0.0009 -0.0003 0.0014
(0.002) (0.0036) (0.0051) (0.0065)

R&D/TA -0.1123*** -0.1906*** -0.291*** -0.382***
(0.0266) (0.049) (0.0676) (0.0839)

MB -0.0063*** -0.0096*** -0.0118*** -0.0137***
(0.0014) (0.0023) (0.003) (0.0038)

INDMEAN 0.031 0.0274 -0.0006 -0.0294
(0.0194) (0.0354) (0.0482) (0.0582)

Constant 0.0061 0.0260 0.1081*** 0.1022***
(0.0108) (0.0187) (0.0249) (0.0295)

Firm-years 14829 13293 11932 11046

Table 9: Partial adjustment model: IV Regression without fixed effects; lagged lever-
age ratio is instrumented by book debt ratio. Standard errors are in parentheses. Stars
indicate a significance level: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Leverage ratio forecasts
one to four years ahead are used in the second step of long term default analysis.
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Prediction Horizon in Years
2 3 4 5

Panel A
Years in the estimation sample: 8

AUC Two-Step Dyn. Model 0.8651 0.792 0.674 0.5564
AUC Base Model 0.8596 0.7723 0.6232 0.5353
Change in % 0.6 2.6 8.2 3.9
P-value 0.2795 0.0035 <0.001 0.0143

Panel B
Years in the estimation sample: 9

AUC Two-Step Dyn. Model 0.8747 0.8356 0.7652 0.638
AUC Base Model 0.8652 0.7908 0.6874 0.5814
Change in % 1.2 5.7 11.3 9.7
P-value 0.0535 <0.001 <0.001 <0.001

Panel C
Years in the estimation sample: 10

AUC Two-Step Dyn. Model 0.8871 0.8468 0.7836 0.7063
AUC Base Model 0.8669 0.8019 0.7195 0.6327
Change in % 2.3 5.6 8.9 11.6
P-value 0.0019 <0.001 <0.001 <0.001

Panel D
Years in the estimation sample: 11

AUC Two-Step Dyn. Model 0.8866 0.8388 0.7853 0.7061
AUC Base Model 0.8712 0.8154 0.7537 0.6773
Change in % 1.8 2.9 4.2 4.3
P-value 0.0012 0.0254 0.0801 0.1377

Panel E
Years in the estimation sample: 12

AUC Two-Step Dyn. Model 0.8811 0.8292 0.7618 0.6713
AUC Base Model 0.8753 0.8198 0.7647 0.6900
Change in % 0.7 1.1 -0.4 -2.7
P-value 0.3279 0.2462 0.8408 0.2455

Panel F
Years in the estimation sample: 13

AUC Two-Step Dyn. Model 0.8790 0.7974 0.7139 0.6466
AUC Base Model 0.8781 0.8187 0.765 0.6861
Change in % 0.1 -2.6 -6.7 -5.8
P-value 0.8214 0.0079 <0.001 0.0025
Firm-years 6861 6592 6342 6086

Table 10: Two-step dynamic vs. base model: out-of-sample prediction accuracy
for varying estimation samples. Number of years in the estimation samples ranges from
8 to 13. Change in % shows the increase in accuracy for the two-step dynamic model.
P-values refer to the null hypotheses of equality of areas under two ROC curves.
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Prediction Horizon in Years
2 3 4 5

Panel A
Years in the estimation sample: 8

AUC Reduced-Form Dyn. Model 0.8436 0.7637 0.6672 0.5586
AUC Base Model 0.8596 0.7723 0.6232 0.5353
Change in % -1.9 -1.1 7.1 4.4
P-value 0.0786 0.6461 0.0245 0.3137

Panel B
Years in the estimation sample: 9

AUC Reduced-Form Dyn. Model 0.8591 0.8146 0.7345 0.6491
AUC Base Model 0.8652 0.7908 0.6874 0.5814
Change in % -0.7 3.0 6.9 11.6
P-value 0.4360 0.1152 0.0469 0.0068

Panel C
Years in the estimation sample: 10

AUC Reduced-Form Dyn. Model 0.8559 0.8051 0.7267 0.6645
AUC Base Model 0.8669 0.8019 0.7195 0.6327
Change in % -1.3 0.4 1.0 5.0
P-value 0.1995 0.8448 0.7573 0.2893

Panel D
Years in the estimation sample: 11

AUC Reduced-Form Dyn. Model 0.8608 0.8195 0.7694 0.6748
AUC Base Model 0.8712 0.8154 0.7537 0.6773
Change in % -1.2 0.5 2.1 -0.4
P-value 0.1607 0.7681 0.4938 0.9298

Panel E
Years in the estimation sample: 12

AUC Reduced-Form Dyn. Model 0.8389 0.7869 0.7333 0.6376
AUC Base Model 0.8753 0.8198 0.7647 0.6900
Change in % -4.2 -4.0 -4.1 -7.6
P-value 0.0015 0.0125 0.1700 0.0592

Panel F
Years in the estimation sample: 13

AUC Reduced-Form Dyn. Model 0.8531 0.7870 0.7007 0.5786
AUC Base Model 0.8781 0.8187 0.765 0.6861
Change in % -2.8 -3.9 -8.4 -15.7
P-value 0.0049 0.0026 <0.001 <0.001
Firm-years 6861 6592 6342 6086

Table 11: Reduced-form dynamic vs. base model: out-of-sample prediction accu-
racy for varying estimation samples. Number of years in the estimation samples ranges
from 8 to 13. Change in % shows the increase in accuracy for the reduced-form dynamic
model. P-values refer to the null hypotheses of equality of areas under two ROC curves.
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Prediction Horizon in Years
2 3 4 5

Panel A
Years in the estimation sample: 10 (leverage), 11 (default)

AUC Two-Step Dyn. Model 0.8877 0.8514 0.7983 0.7187
AUC Base Model 0.8712 0.8154 0.7537 0.6773
Change in % 1.9 4.4 5.9 6.1
P-value <0.001 <0.001 0.0031 0.0093

Panel B
Years in the estimation sample: 10 (leverage), 12 (default)

AUC Two-Step Dyn. Model 0.8899 0.8504 0.8013 0.7207
AUC Base Model 0.8753 0.8198 0.7647 0.6900
Change in % 1.7 3.7 4.8 4.4
P-value <0.001 <0.001 0.0060 0.0280

Panel C
Years in the estimation sample: 10 (leverage), 13 (default)

AUC Two-Step Dyn. Model 0.8916 0.8478 0.7985 0.7215
AUC Base Model 0.8781 0.8187 0.7650 0.6861
Change in % 1.5 3.6 4.4 5.2
P-value <0.001 <0.001 0.0060 0.0011
Firm-years 6861 6592 6342 6086

Table 12: Two-step dynamic vs. base model: out-of-sample prediction accuracy
for varying estimation samples. Leverage forecasts are based on a 10 years history. The
estimation sample for default analysis covers 11 to 13 years. Change in % shows the
increase in AUC for the two-step dynamic model. P-values refer to the null hypotheses
of equality of areas under two ROC curves.
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Figure 5: Leverage forecasts 1 to 4 years ahead: out-of-sample root mean squared
errors for varying estimation samples. (IV Regression without fixed effects.)
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