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Abstract

We study the partial equilibrium portfolio optimization problem for a myopic CRRA
investor who can trade options on individual stocks. Applying the parametric port-
folio approach of Brandt, Santa-Clara, and Valkanov (forthcoming) to derivatives
we show that options characteristics (such as implied volatility and IV smile skew)
convey information about the mispricing in the option portfolios. We take the data
on all US-traded options to build characteristic-based factor portfolios of options.
An investor uses them in addition to the market portfolio and Fama and French
(1992) factors in her utility maximization. Surprisingly, portfolios based on the IV
smile skew turn out to be less important than IV-based portfolios, and factor portfo-
lios from call options are in general more interesting for an investor than the factors
from puts. Market frictions in the form of stock shortsale constraints are compen-
sated by the use of options, and having options with no stock shortsales allowed
may even be better than having only stocks with shortsales permitted. Monthly
rebalancing leads to extreme transaction costs for an investor facing the full bid-ask
spread, providing a limits to arbitrage interpretation of the documented mispricing
in the option portfolios.
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skew risk
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1 Introduction

Individual stock options represent an important class of financial assets. In one-factor
models like Black and Scholes (1973) and Merton (1973) the plain option is just a leveraged
position in underlying with an implicit insurance against adverse stock movements. In
reality options violate assumptions of one-factor models and fit rather multi-factor models
with stochastic volatility (Heston (1993), Bates (2000), among others) and/ or jumps
(Bates (1988), Bakshi, Cao, and Chen (1997) and others). In this case we have several
possible scenarios: an option-specific factor is systematically priced, i.e. an option with
higher exposure to such a factor bears a systematically different risk premium in its
return, an option-specific factor is not priced and the associated risk is not interesting for
an investor, or an option-specific factor is not systematically priced, but an investor would
get an exposure to it due to an irrational but long-lasting mispricing1. It is important to
be able to isolate such factors empirically, i.e. to find the proxies (instrumental variables)
that allow us to approximate the factors from the options’ payoff space.

In this paper we attempt to solve this problem via maximizing the CRRA utility
for a myopic investor having access to the US exchange-traded individual options and
underlying stocks2. Our main contribution is that we use a very extensive dataset of stock
options (on about 5, 000 underlyings) to bridge and extend two strands of literature on
empirical option pricing: research that deals with preference-free analysis of the option
pricing anomalies, and preference-based portfolio analysis with derivatives. We identify
the characteristic-based factors from the options return space that benefit an investor
with the CRRA utility. We are also able to interpret the optimal factor combinations
intuitively in the form of commonly used trading strategies.

Our second contribution is an application of the parametric portfolio policy approach
(Brandt, Santa-Clara, and Valkanov (forthcoming)) in the setup with individual options.
We show that it is a powerful tool to build factors from the existing payoff space and to use
them in the investor’s optimization problem. It allows us to reduce the dimensionality of
the optimization problem from a large number of assets to a significantly smaller number
of factors, or characteristics, that we use to build those factors.

The bulk of recent empirical option pricing studies concentrate on index options.
Bondarenko (2003), Constantinides, Jackwerth, and Perrakis (forthcoming), Bakshi and
Kapadia (2003b) among others document violations of one-factor model assumptions and
confirm the negative sign of the variance risk premium for index options. The limited
research on individual stock options has not come to an agreement on the sign and nature
of variance risk premia yet, and we hope to set guidelines by providing a new evidence
on stock option-based factors. Bakshi and Kapadia (2003a) study 25 individual equity
options and find that their prices embed a negative market volatility risk premium, but
the magnitude of this risk premium is small. Driessen, Maenhout, and Vilkov (2007)
look at options on all S&P100 component stocks and do not find economically significant

1A considerable mispricing may exist for a long time due to transaction costs, and this limits of
arbitrage argument is consistent with the empirical results in Section 6.3

2The form of preferences is not a crucial assumption in our partial equilibrium setup: we use a specific
utility function mainly in order to compare the portfolio return distributions to get the optimal one. We
could have compared the moments of distributions directly, but it would be trickier to get the optimal
ordering of portfolio policies.
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returns of those in excess of one-factor model. Carr and Wu (forthcoming) investigate
the synthesized variance risk swaps for 35 individual securities. They find a large cross-
sectional variation in variance risk premia, and conclude that the majority of the market
variance risk premium is generated by an independent variance risk factor. Goyal and
Saretto (2007) study short-term ATM options on individual stocks and find an econom-
ically important source of mispricing in the options implied volatilities. They conclude
that zero-cost trading strategies in options constructed on the base of variance risk pre-
mium proxy produce a significant average monthly return. We extend this literature in
two dimensions. First, we confirm that on an economy-wide scale with all exchange traded
stock options, the options on individual stocks are not simple leveraged substitutes (with
insurance) for stock risk factors, and that option returns are partly driven by indepen-
dent risk factors. Second, we show that risk factors for options of different moneyness/
maturity/ type profiles may not be correlated very much, and this opens a Pandora’s Box
with respect to modeling options’ dynamics. What we fail to show for now is that these
factors are indeed systematic, and this important question is left for further research.

Previous research shows that options may indeed represent a lucrative asset class for
different investors. Liu and Pan (2003) find that access to derivatives influences optimal
stock holdings, improves the portfolio performance and plays an important role in utility
maximization for non-myopic investors. Driessen and Maenhout (2007) study empirically
the problem of portfolio choice with OTM puts and ATM straddles investments. They
consider several types of investors and find that all of them should optimally have short
positions in the derivatives to earn the jump and volatility risks premia. Haugh and Lo
(2001) use the idea of the Black-Scholes option pricing model to construct buy-and-hold
portfolios consisting of bonds, stocks and options. They are not able to analyze a large
number of options, but find that options are interesting for an investor under various
underlying models and types of preferences. Most of the research on portfolio choice works
with stocks, bonds and index options. Our analysis is different in two dimensions. First,
we use a much larger dataset of individual options, and second, we do not allow investors
to take outright (i.e. just long or short) positions in options. We build factor portfolios
from the options assigned to several asset classes (with similar maturity/ moneyness/
option type profile), and each of those portfolios represents an approximately market
delta neutral long-short spread trade.

A direct maximization of an investor’s utility who also invests in derivatives is a
very complex problem. A great amount of research is focused now on finding the ways
to simplify the portfolio optimization problem. Instead of focusing on the properties of
distribution of returns of the assets in the portfolio, we take the direction similar to
Brandt (1999), Ait-Sahalia and Brandt (2001) and Brandt, Santa-Clara, and Valkanov
(forthcoming). Brandt (1999) solves the problem of finding portfolio weights such that
expectation of marginal utility is equal to zero, conditional on forecasting variables and
without making any assumptions on how returns depend on those variables. Ait-Sahalia
and Brandt (2001) argue that the best approach would be to choose variables that are
able to predict portfolio weights directly rather than first to try to predict returns. Using
a semiparametric approach to construct an index from the default spread, the log of the
dividend-to-price ratio, the term spread, and the momentum, they look for an optimal
portfolio in terms of this index composition.

Building on the previous results we perform our analysis in the following steps. First,
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we select the characteristics of the options and underlying securities that may convey
information about the priced risk factors. For stocks those are traditionally size, book-to-
market (Fama and French (1992)), and momentum (Carhart (1997)). For options we use
the level of implied volatility and the skew size as characteristics3.

Second, we divide all options into the standard asset classes by moneyness (OTM and
ATM), time to maturity (short- and long-dated) and option type (calls and puts). For each
asset class we create quantile based factor portfolios for each of the two characteristics4.
Interestingly, many pairs of the resulting factor returns have very low correlation, and
cannot be treated as substitutes. Potentially it can lead us to a hypothesis that puts
and calls, for example, are in part driven by different risk factors. We also estimate the
risk premia on those factors in stocks’ and options’ portfolios. It turns out that many
of identified factors indeed contribute systematically to option returns, while not having
significant effect on stock returns.

Third, we use the parametric portfolio approach of Brandt, Santa-Clara, and Valkanov
(forthcoming) and work with portfolio weights in a form of a function of the assets’
characteristics. Effectively, we make our portfolio weights a function of 1) the assets’
weights in factor portfolios (as parameter), 2) the decision variable θ that represents the
weight of each factor portfolio. Solving the investor’s optimization problem for θ, we can
find the weights of the underlying assets (if we need to). Surprisingly, it turns out that for
a CRRA investor most interesting factors are derived from implied volatility as a sorting
variable, and many interesting factor combinations are built using call options (while most
options’ mispricing results in the literature are related to put options).

The paper proceeds as follows. In the next section we briefly discuss the general ideas
of the parametric portfolio policies approach of Brandt, Santa-Clara, and Valkanov (forth-
coming) and then apply these ideas to a portfolio optimization problem with derivatives.
In section 3 we describe our data and discuss how we prepare it for further analysis ap-
plying various filters and aggregation. In section 4 we talk about the intuition behind
choosing particular asset characteristics to build factors, show how we create the factor
portfolios and elaborate on our expectations from portfolio optimization with those fac-
tors. In section 5 we explore the solution to the investor’s problem. We show the optimal
trading strategies and try to estimate risk premia on option-based factors. In section 6
we introduce several extensions and also discuss the impact of market frictions on the
investor’s actions. Finally, section 7 concludes.

2 Parametric Portfolio Policy

In this section we discuss the general idea of the parametric portfolio choice methodology,
and show the formal setup of the optimization problem. It turns out that the approach

3As the implied volatility (IV) measure we take the constant volatility from the fitted binomial tree
Cox, Ross, and Rubinstein (1979) with discrete dividends for American options and the usual Black and
Scholes (1973) IV for European options. As the skew measure we use the difference between the IV of
the OTM and ATM options

4We use characteristics as conditioning variables, i.e. we condition the factor portfolio composition in
the month i on the values of characteristics in the previous month i− 1.
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allows for an easy application of the investor’s problem within large universe of assets
whose dynamic is driven by a number of common factors.

2.1 General Idea

Following Brandt, Santa-Clara, and Valkanov (forthcoming), we model portfolio weights
directly as a function of a set of asset characteristics. A representative investor holds the
market and then optimizes her final portfolio composition with respect to the specified
factors derived from the asset returns and respective characteristics. We should note that
in this paper we limit ourselves to linear factors, though it has been shown (Jones (1996))
that option returns rather follow a non-linear factor structure.

The average utility (from consuming the portfolio return each period) over a given
time frame is an objective function of an investor, and it is maximized over the weights
of factor portfolios in the total portfolio, or, in other words, over the loadings (denoted
by θ - constant over time) on the assets’ characteristics.

This scheme effectively decreases the dimension of the optimization problem from a
large number of assets in the investor’s universe to a relatively small number of factors. An
important feature of this approach is that it is very general and allows for easy extensions.
The inclusion of new factors merely represents a problem of computational capacity.

Brandt, Santa-Clara, and Valkanov (forthcoming) suggest to apply the parametric
portfolio policy approach to bond or currency portfolios, using the characteristics of these
assets as choice variables. Instead, we will add derivatives to the assets universe of a CRRA
investor, i.e we will explore the implications of giving the investor access to the options-
based factors. Interesting issues include the choice of factors maximizing the average
utility, and interaction between the choice of stock- and option-based factors.

Next, we look at the formal setup of investor’s optimization problem in the parametric
portfolio approach.

2.2 The Model

Consider investor who wants to form her portfolio using individual stocks and options.
Every month i there are Jsi stocks in the economy and Jdi derivatives, so that the total
number of assets equals Ji = Jsi + Jdi . Investor maximizes her conditional utility from
consuming the portfolio return for each time period (month) i:

max
{ωi,j}

Ji
j=1

Ei [u(ri+1,p)] = Ei

[
u

(
Ji∑
j=1

ωi,jri+1,j

)]
. (1)

Here ωi,j is the weight of asset j at time i, ri,p is the portfolio return at time i and ri,j is
the periodic return of asset j at time i.

We follow and extend the parametric approach of Brandt, Santa-Clara, and Valkanov
(forthcoming) and construct portfolio weights ωi,j for stocks and derivatives as a function
of their characteristics ωi,j = f(ω̄i,j, x

s
i,j, x

d
i,j, θ), where
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f(ω̄i,j, x
s
i,j, x

d
i,j, θ) =

(
ω̄i,j,

1

Jsi
θTxsi,j,

1

Jdi
θTxdi,j

)
, (2)

where ω̄i,j is the weight of asset j at time i in the value-weighted market portfolio, xsi,j
is the vector of characteristics of stock j at time i, xdi,j is the vector of characteristics of
derivative j at time i, and θ is the vector that gives loads on the characteristics and has
to be estimated.

As we use the same vector θ for stocks and derivatives in equation (2), then formally the
following should be true: dim(θ) = dim(xsi,j) and dim(θ) = dim(xdi,j). We construct vectors
xsi,j and xdi,j to have the same dimensions as θ and with zeroes on the last dim(θ) −Ks

elements of xsi,j for the stocks’ characteristics, where Ks is the number of factors considered
for stocks. Similar for derivatives’ characteristics: the first dim(θ)−Kd elements of vector
xdi,j are zeroes, Kd is the number of factors considered for derivatives:

xsi,j = (xs,1i,j , ..., x
s,Ks

i,j , 0, ..., 0︸ ︷︷ ︸
dim(θ)−Ks

)T ,

xdi,j = ( 0, ..., 0︸ ︷︷ ︸
dim(θ)−Kd

, xd,1i,j , ..., x
d,Kd

i,j )T

and the following holds: dim(θ) = Ks +Kd.

Note, that θ is chosen to be constant through the time, it means that portfolio weights
are time dependent only to the extent of the time dependency of ω̄i,j and the characteristics
of stocks and derivatives.

If we define the market portfolio as the benchmark, then the terms 1
Js

i
θTxsi,j and

1
Jd

i
θTxdi,j can be considered as deviations from the benchmark portfolio. We standardize

stocks’ and derivatives’ characteristics so that their cross-sectional distribution becomes
stationary. As a result the cross-sectional means 1

Js
i

∑Js
i
j=1 θ

Txsi,j and 1
Jd

i

∑Jd
i
j=1 θ

Txdi,j are

zero, compatible with an interpretation of the factor portfolio investment as deviation
from the benchmark portfolio. The following equation holds by construction:

Ji∑
j=1

f(ω̄i,j, x
s
i,j, x

d
i,j, θ) · 13×1 =

Ji∑
j=1

(
ω̄i,j +

1

Jsi
θTxsi,j +

1

Jdi
θTxdi,j

)
= 1,

where 13×1 is a vector-column of ones. We denote ri+1,j = (rsi+1,j, r
s
i+1,j, r

d
i+1,j)

T , where
rsi+1,j and rdi+1,j are returns at time i+ 1 on stock j and derivative j respectively.

Since θ does not depend on time, instead of maximizing investor’s conditional utility
in equation (1), it is enough to maximize her unconditional (or mean myopic) utility over
θ: (

1

T

T−1∑
i=0

u(ri+1,p)

)
=

1

T

T−1∑
i=0

u

(
Ji∑
j=1

(
f(ω̄i,j, x

s
i,j, x

d
i,j, θ) · ri+1,j

))

=
1

T

T−1∑
i=0

u

(
Ji∑
j=1

(
ω̄i,j +

1

Jsi
θTxsi,j +

1

Jdi
θTxdi,j

)
ri+1,j

)
. (3)
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We do not impose constraints on ω̄i,j yet, so that short selling is allowed. We study
the implications of the shortsale constraints below in Section 6.1.

We consider an investor with CRRA utility function

u(ri+1,j) =

(
1 + ω̄i,jr

s
i+1,j + 1

Js
i
θTxsi,jr

s
i+1,j + 1

Jd
i
θTxdi,jr

d
i+1,j

)1−γ

1− γ
.

To solve the maximization problem (3) we apply Generalized Method of Moments
(GMM). The moment conditions for the stocks’ characteristics only are the following:

1

T

T−1∑
i=0

[
∂u(ri+1,p)

∂θk

]
=

1

T

T−1∑
i=0

[
u′(ri+1,p) ·

1

Jsi

Ji∑
j=1

xs,ki,j ri+1,j

]
= 0,

where θk for k ∈ Ks is the weight of k-th characteristic of stocks in the portfolio, where
the k-th characteristic of stock j ∈ Jsi at time i is equal to xs,ki,j . Moment conditions for
derivatives’ part can be defined in the similar manner. The Hessian matrix of second
derivatives in the case when l ∈ Ks and m ∈ Kd is equal to

1

T

T−1∑
i=0

[
∂u2(ri+1,p)

∂θl∂θm

]
=

1

T

T−1∑
i=0

[
u′′(ri+1,p) ·

(
1

Jsi

Ji∑
j=1

xs,li,jri+1,j

)
·

(
1

Jdi

Ji∑
j=1

xd,mi,j ri+1,j

)]
.

We analyze the significance of the estimated θ-parameters and utility gains from adding
the new factors into the base case portfolio optimization in order to test if inclusion of
the new factor improves the investment strategy.

Our benchmark portfolio is the market. We can rewrite the returns on the optimal
portfolio in the following way:

ri+1,p =

Ji∑
j=1

ω̄i,jri+1,j+

Ji∑
j=1

(
1

Jsi
θTxsi,j

)
ri+1,j+

Ji∑
j=1

(
1

Jdi
θTxdi,j

)
ri+1,j = ri+1,m+rsi+1,h+r

d
i+1,h,

i.e. it is the sum of the return on the market portfolio and of the return on a zero-cost
portfolio that consists of two parts - equity (rsi+1,h) and derivatives (rdi+1,h). It is possible
to interpret the problem (1) as a utility maximization of an investor who already holds
the market and wants to invest in a (market-neutral) derivatives hedge fund.

3 Data Description

As assets for the portfolio selection problem of an investor we take individual stocks and
plain vanilla options written on them. We restrict the universe of US stocks to those that
have traded options within 1996− 2004 time frame. To construct factor portfolios we use
a number of company- and asset-related characteristics. The data processing procedures,
i.e. initial selection, various filters we apply and variables we construct, are described in
detail for stocks and options separately.
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3.1 Stock Data

We use Compustat as the main source for quarterly company-related data, and CRSP
for information on monthly and daily stock returns and shares outstanding each month.
Selecting only the US stocks with traded options, we end up with 4964 stocks and ini-
tially download the data for them from January 1995 to December 2004. We will use the
following notation: i ∈ {1, ..., 108} - time index and j ∈ {1, ..., 4964} - firms’ index.

We follow Brandt, Santa-Clara, and Valkanov (forthcoming) in forming the monthly
stock factors from Compustat/CRSP variables. The exact definition of those variables
can be found in Appendix A. From Compustat we get the values for assets, liabilities,
common and preferred stocks and deferred taxes. If the price of a common stock does
not exist in Compustat, we take it from CRSP. In the Compustat table returns are given
monthly, and the rest of variables are quarterly. To get monthly data we apply linear
interpolation of quarterly values, and we do so for assets, liabilities, preferred stock value
and deferred taxes. As a result we get for these variables time series of 108-month (from
January 1996 to December 2004) for 4964 stocks and use them to form the appropriate
stock characteristics each month.

We define book equity as equal to total assets minus liabilities plus balance sheet
deferred taxes and investment tax credits minus preferred stock value. Market equity is
equal to price per share times shares outstanding. We omit observations with negative
market or book equity values. Book-to-market (BTM) then is equal to the log of book
equity divided by market equity. Size characteristic (ME) is computed as the log of market
equity. We also calculate momentum each month for all available stocks on a rolling basis
using the monthly returns over the past year as MOMi =

∏i−2
k=i−13(1 + rp,k). For the 1996

year momentum we use monthly returns for 1995-1996 from CRSP.

3.2 Options Data

We use OptionMetrics to get monthly data for put and call options from January 1996
until December 2004. Since we already restricted the universe of stocks to those having
options, it is not surprising that we have options on the same number of underlyings as
the number of stocks, i.e. on 4964.

We work with raw data, i.e. with best bid and ask closing quotes rather than the
interpolated volatility surfaces constructed by OptionMetrics. We select all options having
10 to 180 days to maturity, and then we discard options with zero open interest or with
zero bid prices. To eliminate evident pricing errors we also remove the options with implied
volatilities higher than 100%.

We are interested in monthly holding period returns, and we construct those taking
into account American feature of traded stock options. To calculate the return roi,j for a
given option o on underlying j in month i we use the price of that options at the end of
the previous month and compare it with the value of the option at the end of a given
month. The value of an option is the maximum between its price and the value of the
immediate exercise.

Using different prices we also make an attempt to study the effect of the transaction
costs on the portfolio policy. For the returns with zero transaction costs we use mid quotes
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as prices (i.e. (best bid+best offer)/2 ). For returns with transaction costs we take as initial
price the best bid for a short position in options and the best offer for a long position.
Then we close those positions on the other side of the bid-ask spread at the end of the
month, i.e for the short position we take the max(best offer, value of immediate exercise)
that is effectively equivalent to best offer and for the long position then we take the
max(best bid, value of immediate exercise).

Usually a stock in our dataset has several options outstanding on a given day with var-
ious strikes, expiration dates, and types (put or call). Dealing with each option separately
is quite hard as they are often not comparable cross-sectionally along moneyness and ma-
turity dimensions. To standardize the choice of options for an investor we construct three
moneyness5 and two maturity buckets (corresponding to [0.85, 0.95], (0.95, 1.05] and
(1.05, 1.15] moneyness levels and [10, 90], (90, 180] days to maturity) for calls and puts
appropriately. Then we sort all options into corresponding buckets and aggregate options
on one underlying into one security. We treat each bucket as the investable asset class
with its calculated implied volatility and return. For the return and volatility calculations
on aggregated options we assume equally weighted investments in all options on the same
underlying assigned to a given bucket at a given time. On average there are about 200
aggregated options in each bucket at each point in time.

4 Factors and Predictions

The idea of parameterizing portfolio weights is a simplification of a general portfolio
optimization problem. Of course, an important issue is the choice of factors, with respect
to which we perform the optimization. Our approach is based on the features of stocks and
derivatives markets and existing literature that tries to simplify investor’s optimization
problem and to go around the task of modeling the distribution of portfolio returns.

4.1 Choice of Characteristics

For the stocks the choice of characteristics is relatively straightforward and is based on pre-
vious research. We consider size (market capitalization), book-to-market ratio (Fama and
French (1992)) and momentum (Carhart (1997), Daniel and Titman (1997), Jegadeesh
and Titman (2001) among others). We regard this choice as a base case and add a num-
ber of derivatives with their respective characteristics (read, factors) to the investor’s
investment opportunity set.

Brandt, Santa-Clara, and Valkanov (forthcoming) investigate how the behavior of an
investor would change if she considers interactions between stock-based factors. Instead
we concentrate on the factors that stem from derivatives’ characteristics. We expect them
to improve the performance of an investor’s portfolio.

In an extension we also look at the effect of the stock shortsale constraints (sections
6.1) and at the stock’s liquidity factor (section 6.2). We also test the validity of the results
for portfolio with derivatives where an investor is paying the full bid-ask spread at each

5Where moneyness is defined for each options as a relation of strike (K) to spot price (S), i.e. K
S .
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rebalancing date (section 6.3). We do not consider a transaction costs factor explicitly,
although it might have interesting interaction effects with other characteristics and serve
as a proxy for the derivatives’ liquidity factor. We leave this issue for later research.

To choose the options’ characteristics we simply regard options as at the derivatives
written on the underlying stocks. Under the assumption of an Ito process for the stock S,
driven by a (multidimensional) Brownian motion dW S

t and possibly a jump process dJt

dSt
St

= (µ− λE [ξt]) dt+ σtdW
S
t + ξidJi,

the derivative security return will be driven by the same Brownian motion and the same
jump process. In addition, if the diffusion coefficient σt by itself is stochastic, i.e. its
dynamics can be described by an SDE as for example in Heston (1993) model,

dσ2
t = κ(θ − σ2

t )dt+ ςσtdW
σ
t , dW

S
t dW

σ
t = ρtdt,

the SDE for derivative asset inherits the factors driving diffusion coefficient (and correla-
tion ρt between the Brownians if it is stochastic as well) by the simple application of Ito’s
lemma. The same holds true for jumps: option’s SDE inherits the jump process from the
stock, and furthermore if the jump size/intensity are stochastic, their driving processes
will show up in the SDE for derivative security Q as well.

Qs −Q0 =

∫ s

0

{
∂Qt

∂t
dt+

∂Qs

∂St
dSt +

1

2

∂2Qt

∂S2
t

[dSt]
2 +

∂Qt

∂σ2
t

dσ2
t +

1

2

∂2Qt

∂ (σ2
t )

2

[
dσ2

t

]2
+

∂2Qt

∂St∂σ2
t

[
dStdσ

2
t

]}
+
∑

0<τ≤t

{Q (S (τ))−Q (S (τ−))} .

Thus, the option returns in this setup will be driven by underlying in a leveraged
fashion as well as by stochastic volatility and/or jump processes. If an investor first buys
the market portfolio, and then only adjusts her appetite for direct stock-based factors
like ME, BTM and MOM, she does not normally need options. However, after taking
the risks represented by the stock’s Brownian motion W S

t , she may want to go for pure
volatility/jump risk factors and hence build up positions in options. We recognize this
and build our factors for derivatives using a proxy for volatility and jump risks priced in
options6. Reasonable proxies for this purpose are the implied volatility from the Black-
Scholes model (Black and Scholes (1973)) for European options or from the binomial tree
(Cox, Ross, and Rubinstein (1979)) for American options, and the skew size measure.
Implied volatility level and volatility smile across moneyness and time convey information
on factors affecting option returns directly and through leveraged underlying’s continuous
risk factors. This intuition is confirmed by several studies of the option markets.

Carr and Wu (forthcoming) show that the part of the market risk factor is correlated
with the return variance, and that ME, BTM and MOM risk factors can explain only
a small portion of the documented variance risk premia. The authors conclude that the

6As we discuss below in Section 4.3, our option-based factors are approximately delta-neutral by
construction, and hence we indeed deal with the variance risk or small changes in underlying and can
hope for some variance risk factors identification that are not priced in stocks.
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market variance should be largely driven by risk factors independent of those driving the
underlying returns. Thus, we expect other factors, probably built on the existing assets
like options, to be able to explain the returns of derivative assets.

The CAPM fails to explain why small and value stocks tend to be underpriced. Pietro
and Vainberg (2006) study how firm characteristics like size and book-to-market relate
to equity option expensiveness and check if these characteristics influence the pricing of
systematic variance risk in the equity options market. They find that under the same
level of expected realized variance under physical measure, options on small stocks are
more expensive than options on large stocks and that options on value stocks are more
expensive than options on growth stocks. Authors claim that overestimation of risk on
small and value stocks leads investors to demand higher rates of returns on those types
of stock and propose to study also the influence of momentum earnings on the options
pricing. Implied volatility tend to be higher for small firms, as well as for high book-to-
market ratio firms. Duan and Wei (forthcoming) show that a higher amount of systematic
risk leads to a higher level of implied volatility and a steeper slope of the implied volatility
curve. Following these findings, we can expect some interaction between IV and skew size
factor on the one side, and BTM, ME and MOM factors for stocks, on the other side.

Our choice of the second characteristic of the derivative assets is additionally supported
by the work of Bates (2001), who views the options markets as an insurance market
for crash risk. Deriving myopic portfolio allocation he concludes that equity and crash
insurance are complements in the event of large negative jumps on the market. Branger,
Breuer, and Schlag (2006) look at the optimal exposures to volatility and jump factors in
a semi-simulated environment, and confirm that an investor with CRRA utility optimally
chooses to take exposure to jump and volatility risks under discrete rebalancing conditions.

Thus, we find it reasonable to pick as characteristics for the derivative assets the level
of implied volatility and a measure of the smile skew, calculated as the difference between
the implied volatility for OTM and ATM options. We call it a skew or a crash factor,
though it corresponds to a crash factor only for put options, and for call options it’s
rather a factor of positive jump or of an effect of stochastic volatility.

4.2 Building Factor Portfolios

We define an asset class as the collection of financial instruments with a predetermined
payoff, maturity and moneyness profile. For example, we can define a class of all out-of-the-
money call options with maturity between 10 and 90 days and so on. As described above,
we construct three moneyness and two maturity buckets (corresponding to [0.85, 0.95],
(0.95, 1.05] and (1.05, 1.15] moneyness level intervals and [10, 90], (90, 180] days to
maturity intervals) for calls and puts appropriately. Each of the buckets represents an
investable asset class.

After we have defined the characteristics for a given asset class, we start building
factors. For each factor portfolio we would like to get equally weighted exposure to the
assets in extreme quantiles, with positive sign in extreme upper quantile, and with negative
sign in the lower one. For every date i we form three quantiles for the characteristics and
assign the values −1, 0 and +1 to lower, middle and upper thirds. These values correspond
to the xasseti,j ’s in the portfolio weight definition (2). Then we divide each element of
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the vector xsi,j (for stocks) and xdi,j (for derivatives) by the number of elements in the

corresponding quantile. By construction, those normalized dummies
xs

i,j

Js
i

and
xd

i,j

Jd
i

sum up

to 0 cross-sectionally (when the number of elements in the upper and lower quantiles is
equal, which can easily be achieved). We treat then these normalized quantiles as asset
weights for the factor portfolios corresponding to a given characteristic of a specified asset
class. The decision variable θ manages our exposure to each factor portfolio, and the goal
is to optimize the investor’s utility with respect to θ.

Thus, we define factor portfolios with respect to the characteristics of an asset class.
It follows that in the given setup we limit the option strategies of investors to long/short
positions in options of the same type (calls or puts), long/short synthetic forwards (when θ
for the same moneyness and maturity calls and puts is of a different sign, but has the same
absolute value), and long/short strangles (when θ for the same moneyness and maturity
calls and puts are of the same sign and same absolute value). Maturity differences also
imply some horizontal spreads in forwards and strangles. In Tables 1 and 2 we provide
examples of attainable strategies for different θ combinations. We do not include straddles
or single options in our set of investable strategies as it has been done in the literature (e.g.
in Driessen and Maenhout (2007)). Our main goal is to construct factor portfolios from
options that improve the investor’s asset allocation, and to test if the resulting factors
bear a systematic risk premium in traded assets.

4.3 Predictions and Expectations

As discussed earlier, we start with the market portfolio and then maximize the investor’s
utility by using the enlarged investment opportunity set with a number of additional
factors. For the stocks we take ME, BTM and MOM factors, and for options we create
factors for each asset class based on implied volatility level and skew size.

Though we have a relatively short sample period, for the stock factors we do not
expect to obtain results which differ from previous research. The investor would deviate
from the market by investing in small stocks and finance this purchase shorting large cap
stocks (Fama and French (1992), Fama and French (1996)), by buying value stocks and
stocks outperforming the market in the past, and finance it by selling growth and stocks
that did not perform well in the last 12 month (Jegadeesh and Titman (1993), Jegadeesh
and Titman (2001), Carhart (1997)).

For options we have two characteristics - the level of implied volatility and the volatil-
ity smile skew measure - applied to twelve asset classes (3×2×2 = moneyness × maturity
buckets for calls and puts). When we create factor portfolios for options, we build approx-
imately delta-neutral positions as within each asset class we buy and sell options of about
the same delta level. It makes our factor portfolio immune to small changes in the price
of the underlying and thus roughly isolates the volatility risk factor.

From the literature we know that OTM and ATM options tend to be mispriced (or
we face the peso problem as in Branger and Schlag (2005)) as respective asset classes
with respect to standard asset pricing models (Constantinides, Jackwerth, and Perrakis
(forthcoming), Bondarenko (2003), and an investor optimally sells those options (Driessen
and Maenhout (2007) among others). Tables 3 and 4 provide statistics on all investable
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asset classes we created: for individual options the mean return is quite negative and the
distribution has pronounced fat tails. Returns are positively skewed and very volatile.
OTM options show more negative returns than ATM and ITM contracts. Table 5 shows
the statistics for the option factor portfolios we created. Overall their distribution has
very fat tails and is mostly negatively skewed; some of the factors should be interesting
for investors (judging by the Sharpe Ratios with absolute magnitude above 1).

For our purpose it does not matter if the option group is mispriced with respect to
some asset-pricing model, since we do not allow the investor to go short or long all options
in an asset class. Instead, we are looking at the mispricing of options within one asset class
with respect to the average for this class, and try to infer priced factors (for an investor
with a given utility function) from this mispricing. For asset classes with fairly priced
volatility and jump risks we still expect to see no systematic preference of one options
group over the other, i.e. we would expect the θ-estimates to be insignificant.

From all asset classes we select only those containing OTM and ATM options. ITM
options effectively resemble the leveraged position in the underlying and we want to
study the options having larger time value (relatively to the option price), i.e. higher
compensation for the risks of the option seller. Thus we are left with 4 moneyness and
maturity buckets, two for calls and puts respectively.

As we talk about volatility and skew risks (whatever their real sources are), it makes
sense to sell options with higher volatility and skew characteristic values (it makes more
sense to sell options with high risk premium on those factors, but under assumption that
risk premium is proportional to the levels, we can treat levels of skew and volatilities as
premium proxies).

5 Results

In this section we discuss the results and see if our previous intuition is confirmed by
the empirical findings. First we look at the base case with only stock factors available,
then we move to extensions with various option-based factors. It is important to keep in
mind that the interpretation of the values, especially the sign of θ parameters depends on
the ranking of the correspondingly sorted characteristic cross-sectionally for a given asset
class. For example, for the stocks, negative θ means going short stocks with a high value
of a given characteristic and long stock with a low value of the characteristic. For options
positive θ means being long options with a high value and short options with a low value
of the characteristic. If we take the level of implied volatility as characteristic for asset
class containing short maturity ATM put options and we find positive optimal θ, we will
buy puts with a relatively high volatility and sell puts of this bucket with a relatively low
volatility.

5.1 Base Case

We consider investment into equities as the base case, it means we buy the market and
then we take care of three main stock factors: size (ME), book-to-market (BTM) and
momentum (MOM). The results are in line with previous research and our intuition.
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Brandt, Santa-Clara, and Valkanov (forthcoming)(BSCV) obtain as optimal estimate for
θ the vector:

(θme, θbtm, θmom) = (−1.220, 3.466, 2.00),

for the CRRA case with γ = 5. For the same risk aversion we get θ = (−1.559, 2.469, 2.130).
Taking into account different data used for estimations, we can say that our results are
in line with previous research. An investor would deviate from the market by being long
small stocks, value stocks, and past winners (and short large caps, growth and past losers
respectively).

Adding the option-based asset classes and factors to the investor’s investment oppor-
tunity set in the next subsection we investigate the appetite of an investor to volatility
and skew risk factors.

5.2 Stocks and Options

We do not investigate options separately from stocks, since we hope to capture factors
common to stocks and options through the ME, BTM and MOM factors.

Table 6 shows the time series correlations between the factor portfolios based on
various asset classes. We should be careful in choosing the factor portfolio combinations
for the optimization problem, since factors based on the same characteristic for different
asset classes may be highly correlated. If we see that investors are taking opposite positions
in those factors, we may face a collinearity bias. The good news is that the option-based
factors are hardly correlated with the stock-based factors, so they do not seem to be
substitutes for each other. The maximum absolute correlation is 0.38, while the maximum
correlation between the stock-based factors is much higher with a value of 0.72 between
MOM and BTM. The factors based on calls and puts are close to independent between
option types with maximum absolute correlation of 0.39 for all pairs, and we can freely
mix them in the portfolio. We can also combine certain IV factors with skew factors for
calls and puts, but it seems dangerous to include several IV factors for the same options
type.

To identify interesting factor combinations we look at several measures shown in Tables
7-8 for different levels of risk aversion. First, after solving the maximization problem
of an investor for the whole sample period from January 1996 to December 2004 (107
months), we get portfolio composition with optimal levels of θ. For each optimal portfolio
we calculate distributional characteristics of returns over the whole sample period, mean
utility level and look at the utility gain from adding option-based factors to the base case.
We discard the combinations that do not result in significant utility gain over the whole
sample period7. To test the stability of estimations we also solve the optimization problem
over the first 2/3 of the sample period (i.e. 72 months) and compare the utility calculated
with θ’s of the 72 month period to the utility over the remaining 35 months using the θ
estimates of the first 72 months. We discard the factor combinations resulting in different
mean utility levels over the last 35 months depending on the θ estimation period. From

7We test the significance of the utility gain by comparing the means of utility time series for a given
factor combination and the base case for the whole sample period.
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the surviving combinations8 we select 10 for the exposition. This last choice is not fully
ad hoc: we first take the combinations with as few option-based factors as possible, and
it gives us 4 portfolios with 2 or fewer option-based factors and the rest with 4 or more.
All these combinations are potentially interesting for further analysis as all of them result
in significant positive α with respect to linear factor models (with FF and momentum
factors)9.

Surfing the tables, we can point out the following regularities. First, higher risk aversion
leads to lower θ’s, i.e. to smaller deviations from the market portfolio. Overall this gives
more modest returns and smaller risks expressed by standard deviation of the portfolio
returns over time. Second, there are not many extreme positions with opposite signs in
option factor portfolios, so collinearity does not seem to be a problem for the surviving
combinations.

Looking broadly at the θ values, we can summarize the following findings. Contrary to
the common belief, we do not find many significant θ’s based on skew (crash) characteristic
of the options. If there is some dispersion in volatility/jump pricing for the selected asset
classes, we can barely identify it using the skew size. We will be selling skew factor for long-
term OTM calls, buying some of it for long-term ATM calls. It means that volatility/jump
risk premia are relatively too high for long-term OTM calls with large skew and/or too low
for same options with small skew. For long-term ATM calls the risk premia is relatively
too high for low skew options. Interestingly that for put options the crash factor looks
even worse: we get the best significance for short ATM puts, while the common belief is
that short OTM puts’ pricing is heavily driven by crash fears. In any case, crash factors
never seem to be working alone, and show up normally in combination with the IV-based
factors.

Implied volatility seems to be more important as the characteristic variable for most
asset classes, and an inclusion of just one asset class IV factor can lead to a significant
utility improvement over the base case (as we see in the combination 2 in Tables 7 and 8).
With the IV characteristic for options at our disposal, we will be buying either short- or
long-dated OTM calls’ factor portfolios, and/or selling either short- or long-dated ATM
calls’ factor portfolios. Long position in short-dated OTM put factors also benefit an
investor, while the long-dated puts-based portfolios do not contribute much.

It is hard to name the most important factor as obviously there is lots of interplay
between them. The combinations with more factors included make the investor generally
better off in terms of utility (surely if we do not take into account associated transaction
costs from monthly rebalancing). Comparing calls and puts we come to the conclusion
that there is more mispricing in the call based portfolios than in the put based ones. Using
an only one ATM calls portfolio derived from IV as characteristics the investor signifi-
cantly improves her utility, reaping an additional 3.77% certainty equivalent (expressed
as percentage of the initial wealth) over the base case for the γ = 1.8 (Table 8). Just
two call-based portfolios as in combinations 4, 5, 6 work better for an investor than four

8Depending on risk aversion we have different number of valid factor combination passing all tests.
For γ ∈ {1, 1.8} we have 25 and 23 combinations respectively. Full results can be provided upon request.

9Base case scenario also shows a positive α, though it is based on the same 4 factors that we use for
regression. It is due to difference in factors: in our investor optimization problem we use factors built
from our stock sample, while in factor regressions we use ready-to-use factors from Kenneth R. French
web-site.
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put-based portfolios as in the combination 3.

Including all possible factors in an investor’s optimization problem makes her even
better off, but most θ’s end up being not significant (except for log utility case). Based on
the informal analysis of how many times the theta for a given factor shows up significantly
in the estimations10 we assign the trading signals to a given characteristic quantile. The
results are given in the Table 9, and they confirm our previous findings that call-based
factors are more important for an investor. Within the calls the long-dated options give
more interesting factor portfolios than short-dated ones: we have three strong signals and
one without grade for long-dated calls vs. two strong and two weak for short-dated ones.

To give the reader some additional intuition on the option-based factors, in the Tables
1 and 2 we also provide an interpretation of pairwise factor combinations in the form
of spread trading strategies. Most of them look plausible and are easy to construct, e.g.
characteristic spread in strangles, where we buy (sell) strangles for all options with low
value of characteristic and sell (buy) strangles for all options with high value of the same
characteristic. The combination 5 in Table 8 is exactly this kind of strategy: we are buying
short maturity strangles with high volatility and finance them by selling the strangles
of the same maturity with low volatility. The combinations 4 and 6 in the same table
represent a characteristic spread in vertical spreads, where we buy vertical spreads on
calls with low volatility and sell them with high volatility (for long and short maturities
respectively). The combination 2 is just a factor portfolio, and the others are hard to
interpret. Thus, we use our initial factor portfolios as building blocks for more complex
strategies and note that those strategies can also be used as building blocks to get us to
a new level of complexity.

Following Pietro and Vainberg (2006) we can also expect interaction effects between
the option and stock factors. In the current setup we can identify the option asset classes
where the option-based factors are substitutes for the stock factors in the investor’s prob-
lem. Size factor θ does not seem to fluctuate much across the combinations, and it always
remains significantly negative for all risk aversion levels. The other two stock factor θ’s
are less stable. The first θ responsible for BTM factor drops by most from the base case
level with addition of short OTM puts IV factor, and does even lose significance for a
number of combinations. The other θ corresponding to momentum also drops with the
inclusion of the same OTM put IV factor, but not that significantly. It provides us with
indirect evidence that there is a relation between the pricing of volatility in short-dates
OTM puts and the value vs growth anomaly in stock returns. The correlation between
the corresponding factors is quite low (0.23 for BTM and short OTM puts IV factor), so
the relation must be non-linear. One way of looking into the issue deeper would be the
direct estimation of the factor risk premium in stock returns, and this is left for further
research. It can also be interesting to test if some simple non-linear functional dependency
of carefully chosen factors gives us a reasonable explanation of documented interaction.

The above discussion is based on the results in an ideal environment for an investor,
where she does not face any transaction costs in the form of bid-ask spread, nor has
she any shortsale constraints on stocks. Liquidity of market for a given instrument may
influence the investment strategy as well. In the following sections we also try to shed the

10Here we take into consideration all 23 surviving factor combinations for γ = 1.8 and not only those
presented in Table 8.
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light on the optimal portfolio with market frictions.

5.3 Factor Premia Estimation

As we have seen from interaction between stock and option-based factor portfolios in
the previous section, and as has been noted in the previous research (Ang, Hodrick,
Xing, and Zhang (2006), Xing, Zhang, and Zhao (2007) among others), parameters of the
underlying’s process (realized volatility or observed jumps as proxy for it) and its observed
effect on options’ characteristics (skew in the risk neutral probability distribution, or IV
smile skew size as its proxy) can reveal to us important asset pricing factors, either
systematic or resulting from a sustained mispricing. Pricing errors (α) in the portfolio
return with respect to common linear factor (market, 3 FF, and 3 FF + momentum)
models confirms this intuition. As we see in Tables 7 and 8, each portfolio combination
demonstrates a highly significant positive α over each of the generally accepted linear
models.

We are going to estimate the risk premia on the factors derived from option asset
classes with appropriate characteristics and to see if those factors are systematically priced
in stocks and in options. There are several possibilities for the outcome: first, option-based
factors may be priced in both stocks and options; second, they may be priced in options,
but not priced in stocks, and third, they can be priced in either stocks or options, or in
both, but the estimations may be not robust. The first two outcomes are interesting and
both have important implications. The last outcome may be due to a short estimation
period, or may hint at the sustained mispricing in the option factor portfolios. It would
make option portfolios interesting for an investor, but they will not be loading on any
systematic factors.

The first decision we have to make is what factors and what asset returns we take. We
have seen in Table 6 that many factors for different asset classes are highly correlated,
and there is little sense to estimate risk premium on all of them at the same time. The
model will be definitely misspecified as options have non-linear factor structure (Jones
(1996)), and it is not our purpose here to describe it completely. All we want to see if
linear factors based on option characteristics bear a significant risk premium affecting
option returns directly or through stock returns. We have seen in Tables 7-8 and 9 that
the most interesting factor portfolios are based on IV level for OTM calls (both short
and long-dated), IV level for ATM calls (again both maturities), on the skew size for
long-dated OTM calls and IV level of short-dated OTM puts. Our working hypothesis
would be that those factors represent priced systematic risk factors for option returns.
We would expect the IV from OTM short puts factor to be priced in stocks though its
interaction with the BTM factor.

For better diagnosis of what factors are important, we estimate risk premia for each
option-based factor individually. We follow standard two-stage Fama and MacBeth (1973)
procedure and include in factors three FF factors (Fama and French (1992)), momentum
(Carhart (1997)) and one of the option-based factors. To be consistent with other asset
pricing literature we use not the self-made factors, but rather download the ready-to-use
ones from Kenneth R. French web-site. We use returns on all options in the defined asset
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classes11, and all 4964 time series of stock returns used in the paper to form standard
portfolios. We first build 3 portfolios for each of the option asset classes using the full-
sample estimated option factor β as a sorting variable. It gives us 36 derivatives portfolios.
Then we build 30 portfolios from stocks, following the same procedure and using the
estimated factor β as a sorting variable. On the second stage we infer the factor risk
premia with GLS (using the variance-covariance matrix of first stage residuals as weighting
matrix as suggested by Shanken (1985) among others) from 36 option portfolios and 30
stock portfolios separately. In the Table 10 we show the estimated risk premia on market,
three Fama-French and momentum factors, plus one selected option-based factor. In Table
11 we also show the summary results for estimated risk premium on option-based factors
using 36 option and 30 stock portfolios, as well as the t-statistics calculated with Shanken
(1992) correction in both cases.

We should be very careful in drawing any strict conclusions from the results: as we
noted, the tests are definitely ill specified (as we can see from large significant α’s in
each regression), the portfolio returns and factors are too volatile and the time series are
rather short (only 107 months) to identify the factor risk premia with confidence. After
we correct the second step regression standard errors for errors in estimated betas (due
to Shanken (1992)), we hardly get any significance even for standard factors. The risk
premia in stocks is not big enough in the first place to be able to split it into so many
components using limited series length. In options the risk premia is bigger in magnitude
(due to their leveraged nature), and we get enough significance even after all necessary
standard errors’ corrections. However, when we compare the calculated risk premia for
option-based candidate factors with the time series mean of the respective factors in Table
5, we see that the estimations are not nearly the level where they should be. Thus, we
should either increase the sample length or come up with some other testing method.

Our exercise still delivers some interesting results concerning the standard linear fac-
tors we used in the estimation. The risk premia estimations for SMB and MOM factors
are mixed, while the estimations for the market and for HML risk premia are very stable,
and the HML risk premium is everywhere negative. Mean value of the HML stock factor
is positive, and hence the value premium estimates from stocks and options are not con-
sistent. Several explanations may support the findings. First, Arshanapalli, Fabozzi, and
Nelson (2006) show that the value premium can turn statistically negative in stocks in
the strong market. The US market from 1996 until 2004 experienced hard times, but still
grew about 100% in these years (if we look at the S&P100 index). Option buyers may
be overestimating the prospects of the economy in comparison to the stock buyers, and
hence they may be implicitly pricing the negative value premium in the options. Second,
there may be higher replication costs for options on the firms in distress (or in general
high value firms), and this leads to lower returns on options. The second point can be
verified empirically and we intend to do so in later research.

11As we have described in section 3.2, we have 3 moneyness × 2 maturity × 2 option type buckets and
all options in them as investable asset classes.
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6 Extensions

This section discusses how our previous analysis changes if we introduce some real life
conditions into our optimization problem12. We talk about shortsale constraints and liq-
uidity related issues for stocks, and then also make an investor pay full bid-ask spread
while rebalancing derivatives’ based factor portfolios.

6.1 Constrained Optimization

We assume in our analysis that we have a sophisticated investor, and she has access to
all markets and can carry out all possible trades. However, even sophisticated investors
will not be able to short the stocks if there are no stocks to borrow. This may happen in
the small cap markets or under certain adverse market conditions. If there are options on
a stock, one can always take a synthetic forward position to get access to the underlying
risk. We investigate how the portfolio composition is going to change from the previous
optimization if we impose the shortsale constraints on stocks. As we restrict the investor’s
assets choice to factor portfolios instead of direct option positions, creating forwards for
some stocks may not be possible.

We solve the optimization problem using the same GMM routine as before with an
additional condition that the optimal weight of any given stock j at each time i in the
portfolio should be non-negative13:

ω̄i,j +
1

Jsi
θTxsi,j ≥ 0, ∀i ∈ {1, ..., 107}, ∀j{1, ..., 4964}.

This additional constraint transforms into the formal number of 4, 964 ∗ 107 = 531, 148
inequalities (in reality there are fewer inequalities due to missing returns), and solution is
very time consuming. As a consequence we solve the problem only for several interesting
factor combinations.

The summary results are provided in Tables 12 - 13. We select for exposition the same
combinations as in the unconstrained case, though again we get more significant results.
Two points are worth mentioning. First, the stock weights’ non-negativity constraints are
binding, and the investor now mostly refuses to invest in stock factors except for ME.
θ estimations for BTM and MOM are not significantly different from 0, while for ME θ
is very alike across all estimated combinations (and significant for log utility case). The
ME factor is dominating the others, and an investor tries to go short the ME factor
portfolio. However, the non-negative weight constraints should be stopping her very fast.

12While we will be mostly talking about the constrained investor problem now, please note that the
investor has been constrained in her choice from the very beginning due to an incomplete market. The
market is incomplete as we use options as non-redundant assets in addition to the stock market and trying
to optimize investor’s utility with respect to unknown factors. When we introduce additional frictions,
we just reduce the attainable payoff space even more.

13The optimization setup is misspecified to some degree here as an investor may not know the value
of the characteristic in the remote future. However, as θ’s are assumed constant over time, we have to
impose this forward-looking restriction. Another way to model it would be to optimize with non-negativity
constraints assuming today’s values of characteristics and later just trim the stock holdings at zero if they
get optimally negative.
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Second, option-based factors compensate for stocks constraints, and in all but one cases
(combination 2 for γ = 1.8, Table 13) we get significant utility improvement over the base
constraint case. Moreover, in three cases for each risk aversion level we get a significant
utility improvement over the unrestricted base case. Such strategies involve four and more
option factor portfolios, and hance may be overstating the utility gains due to transaction
costs.

The results for the significance of the option θ’s estimations resemble to a large extend
the unconstraint case: an investor chooses IV-based portfolios, where all estimated θ’s are
significant, while crash factor does not seem to be adding much to the investor’s utility.
Crash factor θ’s are significant in combinations with IV factors only, e.g. combination
7 in Tables 12-13. Interestingly, the magnitude of estimated absolute θ’s is smaller for
the constraint case. Two explanations arise: first, this is the way to compensate for the
reduced stock factor holdings, i.e. there is an interaction between the stock and options
factor portfolios. Second, options are by themselves riskier investment vehicles, and now
we invest less in them as we reduced relatively safer stock investment.

In general we can say that option-based factors to a large extend allow an investor to
overcome the short-sale constraints. Again, IV based factors prove to be more important
than crash factors.

6.2 Stock Liquidity Factor

In this section we form the liquidity factor for stocks following Pastor and Stambaugh
(2003). They construct liquidity measure that reflects temporary price changes accom-
panying order flow and find that the aggregate liquidity is a priced state variable in the
economy. The liquidity risk is related to the expected return differences that are not
explained by stocks’ sensitivities to market, size, value, and momentum factors.

We use this approach to study if liquidity is a priced factor in the portfolio with option-
based factors and if options can compensate by its leveraged nature for the liquidity of
the underlying stocks. We do not claim, that this is the only way accounting for liquidity
in the portfolio optimization, instead we insist that methodology is flexible and allow
inclusion of many other factors. We estimate liquidity by the following OLS regression:

rei,d+1,j = ψi,j + φi,jri,d,j + ξi,jsign(rei,d,j)vi,d,j + εi,d+1,j,

d = 1, ..., D, where ri,d,j is the return on stock j on day d in month i, and rei,d,j is the
excess return over the market represented by the CRSP value-weighted index, vi,d,j is the
dollar trading volume (in millions) for stock j on day d in month i. Then the estimated
coefficient ξi,j is the stock’s j liquidity in month i, and it is calculated only if there are
more than 15 return observations in a given month. Same as for the other stocks’ and
derivatives’ characteristics, we standardize ξi,j and form 3 quantiles at each time i.

Intuitively, large stocks are more liquid than small ones. The first inspection of our
results confirms this intuition by the correlation of 0.51 between liquidity and size factors
(Table 6). Liquidity is also positively correlated with both the value factor (0.18) and
momentum (0.19), the latter is in line with the suggestions of Pastor and Stambaugh
(2003).
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It is interesting that the estimate of liquidity-θ appears to be significant in the base
case only if the risk aversion coefficient is equal to 1 (log-utility). Including all the factors
in our portfolio optimization under the same level of risk aversion does not gain much of
the utility from adding liquidity as a factor (0.5387 with liquidity and 0.5384 without it).

For the risk aversion of 5, the significance of the liquidity factor in the portfolio is not
high enough, but can be considered in the portfolio if ATM short maturity IV calls factor
are included in the the portfolio, sometimes together with the OTM short maturity IV
puts factor. Both θ parameters of this factor portfolios are negative.

The general tendency of the θ estimates for the factor combinations with liquidity is
the same as described in the section (5.2). However, we have to point out that θ estimates
for liquidity are very high for some combination of factors, i.e. our estimates may not
be very reliable and including liquidity into the factor combination would need some
refinements14.

6.3 Transaction Costs

Evidently, transaction costs affect the investment policy, and we investigate if investors
can adapt knowing that they face bid-ask spread on each rebalancing date. Even for large
stocks in S&P100 index the average bid-ask spread fluctuates between 3% for deep ITM
puts, 7% for ATM puts and 42% for deep OTM puts (Horn, Schneider, and Vilkov (2007)),
and for small stocks in our sample the rebalancing costs may even be worse.

We approach the problem from two different angles. First, we check what happens to
the portfolio performance if the investor optimizes using the mid-price returns and then
in reality faces bid-ask spread. Second, we let investor know in advance that each month
she will only get the ask-to-bid return on the long options’ positions and bid-to-ask return
on the short options’ positions.

The first approach deteriorates the portfolio performance completely, and this is not
surprising with so frequent rebalancing and noted bid-ask spreads. Mean returns on the
portfolio vary from −6.9% for strategies with only a few ATM option’-based factors to
−745% in cases when OTM options are added. A cure may be to go for a less frequent
rebalancing policy, or no rebalancing at all.

We try another trick: we provide an investor with data on returns assuming real bid-
ask spreads on long and on short positions. Again we assume that an investor liquidates
all old positions at the end of a month and creates new ones after that, each time incurring
full bid-ask spread. This assumption is not very realistic as part of the last month positions
will most probably survive into the next month and no real transaction will take place.
We want to see if the options markets remains lucrative under these conditions.

It turns out that an investor is able to adapt partially: her portfolio returns are mostly
positive now and range from about −2% to 11.54%, but still an investor is not able to
attain a higher utility than by just investing in stock based factors. The bottom line is
that facing real transaction costs an investor has to optimize not only to risk factors, but
also to a rebalancing frequency. However, advanced market participants able to trade at
mid market or better can benefit from the analysis in this paper.

14The table with θ estimates can be provided upon request.
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7 Conclusion

Individual stock options represent an important class of financial assets, and investors
are looking for ways to identify the trading rules for them. We show empirically that
stock option characteristics (such as the implied volatility and the volatility smile skew)
contain information on the mispricing in the option portfolios. We build option factor
portfolios based on these characteristics, and an individual investor with CRRA utility
function can use them to improve her utility. In contrast with the previous research we use
a very extensive option prices dataset and directly solve an investor’ utility maximization
problem.

As a second contribution, we apply a methodology of Brandt, Santa-Clara, and Valka-
nov (forthcoming) to the portfolio selection with stock options. It allows us to reduce the
dimensionality of an investor’s optimization problem from the number of assets (which is
huge with options and makes optimization unrealistically complex) to a limited number
factor/asset class combinations. We form 8 investable asset classes (short and long dated
× OTM and ATM × calls and puts) for options and show that implied volatility and skew
size can be used to build a number of sufficiently independent factor portfolios. Interest-
ingly, IV-based factor portfolios play a much more important role in portfolio formation
than the skew size based factors, and in general call option factors are preferable to put
factors. Directly estimating the risk premia on the option-based factors in options and
stocks, we do not find any significant premia in stock returns, while estimations with the
options portfolios do not prove to be robust due to the short sample and very noisy data.
The absence of the risk premium on stocks would suggest that we find factors specific to
options only, and this issue is left for further research.

When introducing realistic market frictions in the form of shortsale constraints for
stocks, we provide evidence that option-based factors can successfully substitute for size,
book-to-market and momentum factors. It may be even possible to attain a better utility
than in the unconstrained case with stocks only. Again, implied volatility level is an
extremely important sorting variable, while skew size plays a secondary role and is mostly
an insignificant characteristic.

When an investor faces full bid-ask spread for individual options and has to rebalance
fully each month, options lose their lucrativeness and an investor does not want to invest
anything in option-based factors. It is true when we apply option returns with bid-ask
spread to the strategy without frictions and when we allow an investor to adapt the
strategy to real market conditions. Thus, trading the factors identified in this work may
be interesting only to market makers and other large market participants that can execute
the orders at mid-price or better.

There are several ways to extend the current work. We need to find a better way to
estimate the risk premia on the derived factors. We can also try working with different
characteristics for options, such as the realized variance difference between the implied
and realized measures of variance, or such as some correlation between option returns and
macro-variables. Interesting would be to construct a transaction cost factor for derivatives
instead of incorporating the bid-ask spread in optimization and to allow investor to op-
timize with respect to this factor. Finally, we may extend the analysis of the transaction
costs for different market participants adjusting the rebalancing frequency or limiting the
number of assets rebalanced each period. Those issues are left for future research.
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A Compustat/CRSP Variables

We use the following items from Compustat (or CRSP if it is given in the brackets) to
calculate stock’s characteristics:

• price per share - DATA12, DATA13, DATA14 are price-close-1st, 2nd and 3rd month
of quarter (’PRC’ closing price or bid/ask average),

• shares outstanding - DATA61 common shares outstanding (’SHROUT’ shares out-
standing),

• total assets - DATA44 assets total,

• liabilities - DATA54 liabilities - total,

• preferred stock value - DATA71 preferred stock redeemable or DATA55 preferred
stock carrying value, or 0,

• balance sheet deferred taxes - DATA22 deferred taxes & inv. tax credit,

• monthly return - (’RET’ holding period return).
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Table 3: Monthly Return Statistics of Call Options for each Bucket

This table gives mean, standard deviation, skew and kurtosis of the return distribution
in each call option bucket, where [0.85; 0.95], (0.95; 1.05] and (1.05; 1.15] are moneyness
intervals of option buckets. It shows also the average number of calls in the bucket. Each
column gives the corresponding parameters for different maturity option: the first are short
maturity options (10 to 90 days) and the second are long maturity ones (90 to 180 days).

statistics by moneyness groups short maturity long maturity
[0.85; 0.95] or ITM

mean 0.0068 -0.0200
std. deviation 0.2594 0.1695

skew 1.46 1.15
kurtosis 6.38 4.96

average number of calls 182.11 208.47

(0.95; 1.05] or ATM
mean -0.2049 -0.0695

std. deviation 0.2556 0.2047
skew 1.21 1.10

kurtosis 4.69 4.58
average number of calls 216.15 226.71

(1.05; 1.15] or OTM
mean -0.4969 -0.1923

std. deviation 0.1591 0.2027
skew 1.13 1.22

kurtosis 4.07 5.08
average number of calls 201.82 209.88
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Table 4: Monthly Return Statistics of Put Options for each Bucket

This table gives mean, standard deviation, skew and kurtosis of the return distribution
in each put option bucket, where [0.85; 0.95], (0.95; 1.05] and (1.05; 1.15] are moneyness
intervals of option buckets. It shows also the average number of puts in the bucket. Each
column gives the corresponding parameters for different maturity option: the first are short
maturity options (10 to 90 days) and the second are long maturity ones (90 to 180 days).

statistics by moneyness groups short maturity long maturity
[0.85; 0.95] or OTM

mean -0.5182 -0.2335
std. deviation 0.1744 0.2030

skew 2.11 1.59
kurtosis 9.14 6.62

average number of puts 283.01 295.78

(0.95; 1.05] or ATM
mean -0.2957 -0.1417

std. deviation 0.2504 0.1942
skew 1.76 1.58

kurtosis 7.21 6.64
average number of puts 254.88 274.37

(1.05; 1.15] or ITM
mean -0.0557 -0.0576

std. deviation 0.2732 0.1866
skew 2.36 2.22

kurtosis 12.59 12.04
average number of puts 162.10 201.17
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Table 5: Statistics for the Options Factor Portfolios

The Table provides summary statistics for the option factor portfolios. Factor portfolios are
constructed from monthly option returns as described in Section 4.2. The Mean and the
St.Dev. are given in percent per month, while Sharpe Ratio is annualized.

Factors Mean St.Dev. Skew Kurtosis Sharpe Ratio
Call OTM Short IV 6.629 19.822 0.320 2.925 1.159
Call OTM Short Skew 3.326 27.154 0.493 5.148 0.424
Call OTM Long IV 3.408 22.094 -0.221 2.897 0.534
Call OTM Long Skew -2.957 20.044 0.571 5.218 -0.511
Call ATM Short IV -9.154 27.842 -0.686 4.980 -1.139
Call ATM Short Skew 3.207 34.817 0.549 7.020 0.319
Call ATM Long IV -8.852 25.646 -0.866 3.649 -1.196
Call ATM Long Skew 3.921 27.091 -0.340 9.888 0.501
Put OTM Short IV 6.305 14.426 0.160 5.192 1.514
Put OTM Short Skew 2.083 18.181 0.297 8.760 0.397
Put OTM Long IV 0.715 22.649 -2.624 18.100 0.109
Put OTM Long Skew -0.662 14.394 -1.503 11.645 -0.159
Put ATM Short IV -1.782 20.851 0.219 3.941 -0.296
Put ATM Short Skew -2.878 27.184 -2.954 21.134 -0.367
Put ATM Long IV -0.385 18.610 -0.331 5.254 -0.072
Put ATM Long Skew -1.347 16.282 -3.964 32.154 -0.287
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Table 7: θ Estimates, γ = 1

This Table gives an overview of the portfolio policy estimation of an investor with the
log utility (see Table 8 for the CRRA utility with risk aversion γ = 1.8). Each column
gives the estimated thetas (bold italic significant at 5%, and just bold - at 10% levels) for
various factor combinations, and the mean level of utility over all monthly periods with the
given thetas combination. Base combination refers to an unconstrained case without option
factor portfolios. We calculate the utility improvement for each combination over the base
case (to test the significance of the utility difference we use the time series of utilities for
each combination pair to get the t-stat of the mean difference). The certainty equivalent
shows in percent how much more wealth an investor would require for certain to achieve
the same utility as in the current factor combination if she already has the utility as in
the base case. Next, the distributional characteristics are calculated from the time series
of portfolio returns constructed from optimal thetas and market/ factor monthly returns.
The alfas (shown in percent per month) with respect to the three generally accepted models
are derived from regressing the portfolio returns on the constant and monthly respective
factors.

Factors Base 2 3 4 5 6 7 8 9 10
Size -7.70 -8.20 -6.39 -5.00 -6.59 -9.13 -8.20 -7.39 -6.49 -5.43
Book-to-market 8.01 3.66 1.86 -2.29 5.33 5.43 6.60 -1.00 4.32 -3.51
Moment 7.64 5.68 3.41 2.68 7.23 6.75 7.16 4.87 7.03 2.05
Call OTM Short IV - - - 1.47 2.19 - - 1.86 2.07 1.93
Call OTM Short Skew - - - - - - - - - -
Call OTM Long IV - - - - - 1.59 2.34 - 1.19 1.68
Call OTM Long Skew - - - - - - -1.36 - - -
Call ATM Short IV - -1.32 - - -1.71 - - -1.49 -0.73 -0.83
Call ATM Short Skew - - - - - - - - - -
Call ATM Long IV - - - - - -2.92 -3.20 - -2.12 -1.57
Call ATM Long Skew - - - - - - 0.70 - - -
Put OTM Short IV - - 3.91 3.13 - - - 2.51 - 4.45
Put OTM Short Skew - - - - - - - - - -
Put OTM Long IV - - -0.95 - - - - - - -0.87
Put OTM Long Skew - - - - - - - - - -
Put ATM Short IV - - -1.36 - - - - 0.01 - -1.32
Put ATM Short Skew - - - - - - - - - -
Put ATM Long IV - - 1.60 - - - - - - 1.32
Put ATM Long Skew - - - - - - - - - -
Utility whole sample 0.100 0.157 0.220 0.221 0.238 0.240 0.290 0.294 0.305 0.393
Util diff:comb.-base 0.000 0.058 0.120 0.121 0.138 0.141 0.190 0.194 0.206 0.294
CE w.r.t. Base 0.00 6.55 14.07 14.25 16.33 16.66 23.13 23.67 25.23 37.69
Port Return:mean 18.12 29.23 38.70 39.07 45.92 50.69 61.51 56.31 58.42 79.05
Port Return:std 39.79 52.22 52.82 55.13 66.13 82.80 96.43 72.93 78.04 90.00
Port Return:skew 0.222 0.283 -0.117 -0.025 0.160 0.865 1.394 0.205 0.742 0.208
Port Return:kurtosis 3.309 2.750 3.247 2.715 2.659 3.633 5.928 2.657 4.142 2.770
Port Return:min -72.74 -86.10 -86.24 -91.43 -80.63 -77.22 -84.77 -88.07 -88.08 -91.27
Port Return:max 137.57 160.38 189.83 188.32 218.87 335.77 460.14 230.45 325.19 329.75
Port Return:median 17.58 24.99 43.24 42.09 43.52 29.93 40.76 55.22 57.84 74.94
alfa w.r.t CAPM 17.49 27.02 37.38 37.23 44.05 48.29 59.37 53.60 56.23 75.98
alfa w.r.t FF 13.15 23.41 35.23 35.88 40.28 40.49 49.77 50.71 50.67 74.07
alfa w.r.t FF+MOM 12.22 22.48 32.88 32.06 38.17 40.63 49.95 46.40 48.63 70.18
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Table 8: θ Estimates, γ = 1.8

This Table gives an overview of the portfolio policy estimation of an investor with the
CRRA utility with risk aversion γ = 1.8 (see Table 7 for log utility results). Each column
gives the estimated thetas (bold italic significant at 5%, and just bold - at 10% levels) for
various factor combinations, and the mean level of utility over all monthly periods with the
given thetas combination. Base combination refers to an unconstrained case without option
factor portfolios. We calculate the utility improvement for each combination over the base
case (to test the significance of the utility difference we use the time series of utilities for
each combination pair to get the t-stat of the mean difference). The certainty equivalent
shows in percent how much more wealth an investor would require for certain to achieve
the same utility as in the current factor combination if she already has the utility as in
the base case. Next, the distributional characteristics are calculated from the time series
of portfolio returns constructed from optimal thetas and market/ factor monthly returns.
The alfas (shown in percent per month) with respect to the three generally accepted models
are derived from regressing the portfolio returns on the constant and monthly respective
factors.

Factors Base 2 3 4 5 6 7 8 9 10
Size -4.60 -5.06 -4.33 -5.44 -3.55 -4.16 -5.07 -4.27 -4.12 -3.51
Book-to-market 5.43 3.36 2.21 4.15 0.06 3.99 4.64 0.45 3.42 -0.78
Moment 4.98 4.15 2.72 4.61 2.48 4.75 4.79 3.10 4.72 1.89
Call OTM Short IV - - - - 0.96 1.38 - 1.23 1.46 1.28
Call OTM Short Skew - - - - - - - - - -
Call OTM Long IV - - - 1.02 - - 1.49 - 0.85 1.16
Call OTM Long Skew - - - - - - -0.97 - - -
Call ATM Short IV - -0.82 - - - -1.09 - -0.91 -0.54 -0.61
Call ATM Short Skew - - - - - - - - - -
Call ATM Long IV - - - -1.73 - - -1.96 - -1.39 -1.04
Call ATM Long Skew - - - - - - 0.53 - - -
Put OTM Short IV - - 2.56 - 2.00 - - 1.77 - 2.78
Put OTM Short Skew - - - - - - - - - -
Put OTM Long IV - - -0.67 - - - - - - -0.57
Put OTM Long Skew - - - - - - - - - -
Put ATM Short IV - - -0.91 - - - - -0.17 - -0.72
Put ATM Short Skew - - - - - - - - - -
Put ATM Long IV - - 0.98 - - - - - - 0.66
Put ATM Long Skew - - - - - - - - - -
Utility whole sample -1.190 -1.157 -1.117 -1.116 -1.115 -1.113 -1.087 -1.078 -1.071 -1.024
Util diff:comb.-base 0.000 0.033 0.073 0.074 0.075 0.077 0.102 0.112 0.118 0.165
CE w.r.t. Base 0.00 3.77 8.72 8.87 9.03 9.25 12.65 13.95 14.89 21.88
Port Return:mean 11.54 18.99 26.32 31.19 26.70 29.57 39.40 37.05 40.12 52.55
Port Return:std 24.43 32.88 35.23 49.92 35.80 42.21 61.36 45.99 53.15 58.61
Port Return:skew 0.14 0.18 -0.14 0.81 -0.16 0.16 1.45 0.09 0.78 0.25
Port Return:kurtosis 3.28 2.67 3.32 3.44 2.66 2.65 6.16 2.68 4.32 2.94
Port Return:min -45.30 -58.79 -60.00 -51.22 -69.51 -53.59 -55.99 -64.68 -61.08 -67.94
Port Return:max 79.70 98.26 128.47 194.93 114.02 140.27 295.33 148.74 226.00 221.27
Port Return:median 11.86 17.76 29.83 18.75 28.70 26.86 26.54 40.20 36.09 52.78
alfa w.r.t CAPM 10.97 17.55 25.33 29.64 25.43 28.17 37.87 35.24 38.46 50.53
alfa w.r.t FF 8.09 14.80 23.67 24.63 23.79 25.47 31.59 33.04 34.54 48.57
alfa w.r.t FF+MOM 7.38 14.05 22.24 24.49 21.53 24.31 31.61 30.73 33.40 46.40
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Table 10: Risk Premium Estimated from Option Portfolios

The table shows the estimated risk premia in option returns on five factors: three Fama-
French, momentum and one option-based one. We use time series of 107 monthly returns
on 36 option portfolios. We build them by allocating options in each of the option-based
asset classes (we regard all options in 3 moneyness × 2 maturity × 2 option type buckets
as investable asset classes) to three portfolios using current option-based factor loading β
as a sorting variable (for the first estimation without the option factor, we sort by market
β). In the second step we use the GLS regression and adjust the standard errors using the
Shanken (1992) correction. Risk premia are in bold italic if significant at 5% level, and just
bold - at 10% level.

Last factor\Factors Constant Market SMB HML MOM Option Factor
none -0.323 0.071 -0.005 -0.118 0.021 -
Call OTM Short IV -0.226 0.027 0.020 -0.014 -0.045 0.322
Call OTM Short Skew -0.401 0.129 -0.068 -0.167 -0.033 -0.196
Call OTM Long IV -0.251 0.104 -0.027 -0.157 -0.081 0.200
Call OTM Long Skew -0.335 0.111 -0.081 -0.171 0.010 0.226
Call ATM Short IV -0.268 0.095 -0.031 -0.115 0.079 -0.169
Call ATM Short Skew -0.326 0.055 -0.054 -0.105 0.050 -0.128
Call ATM Long IV -0.295 0.103 0.023 -0.183 -0.003 -0.027
Call ATM Long Skew -0.226 0.109 0.194 -0.181 0.033 0.142
Put OTM Short IV -0.164 0.118 0.038 -0.153 0.063 -0.031
Put OTM Short Skew -0.341 0.071 -0.041 -0.110 -0.081 0.000
Put OTM Long IV -0.335 0.087 -0.013 -0.147 0.142 -0.444
Put OTM Long Skew -0.294 0.188 0.076 -0.281 0.045 -0.244
Put ATM Short IV -0.274 0.073 0.042 -0.130 0.111 -0.482
Put ATM Short Skew -0.310 0.071 0.035 -0.130 0.021 -0.112
Put ATM Long IV -0.320 0.122 0.067 -0.211 0.006 -0.229
Put ATM Long Skew -0.261 0.066 0.162 -0.120 0.183 0.076
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Table 11: Estimated Risk Premium on Option-Based Factors: Summary

The table shows the estimated risk premia in option and stock returns on one option-based
factor only (i.e. we show only the last factor statistics from a procedure with 5 factors: three
Fama-French, momentum and option-based one). We use time series of 107 monthly returns
on 36 option or on 30 stock portfolios. We build option portfolios by allocating options in
each of the option-based asset classes to three portfolios using current option-based factor
loading β as a sorting variable. We build stock portfolios by allocating stocks to 30 portfolios
based on the first step regression option-based factor β estimates. In the second step we use
the GLS regression and adjust the standard errors using the Shanken (1992) correction.

Options Stocks
Factor Risk Premium t-stat Risk Premium t-stat

Call OTM Short IV 0.322 8.893 0.017 0.764
Call OTM Short Skew -0.196 -1.153 -0.023 -0.754
Call OTM Long IV 0.200 2.677 0.038 1.344
Call OTM Long Skew 0.226 2.265 0.017 0.774
Call ATM Short IV -0.169 -1.622 0.030 0.857
Call ATM Short Skew -0.128 -1.260 -0.049 -1.318
Call ATM Long IV -0.027 -0.318 0.028 0.939
Call ATM Long Skew 0.142 1.630 -0.017 -0.592
Put OTM Short IV -0.031 -0.679 -0.006 -0.392
Put OTM Short Skew 0.000 -0.005 -0.011 -0.525
Put OTM Long IV -0.444 -7.307 -0.006 -0.230
Put OTM Long Skew -0.244 -3.899 0.031 1.779
Put ATM Short IV -0.482 -7.869 0.027 0.949
Put ATM Short Skew -0.112 -1.877 0.029 0.953
Put ATM Long IV -0.229 -4.263 0.011 0.514
Put ATM Long Skew 0.076 1.964 0.014 0.758
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Table 12: θ Estimates, Constrained Case, γ = 1

This Table gives an overview of the portfolio policy estimation of an investor with log utility
(see Table 13 for γ = 1.8) . Each column gives the estimated thetas (bold italic significant
at 5%, and just bold - at 10% levels) for various factor combinations, and the mean level
of utility over all monthly periods for the given thetas combination. Base combination
refers to an unconstrained case (Base in Table 7) without option factor portfolios. C.Base
combination refers to the constrained optimization problem without option factor portfolios.
We calculate the utility improvement for each combination over the base case and over the
constrained base case (to test the significance of the utility difference we use the time
series of utilities for each combination pair to get the t-stat of the mean difference). The
certainty equivalent shows in percent how much more wealth an investor would require
for certain each month to achieve the same utility as in the current factor combination if
she already has the utility as in the base case. Next, the distributional characteristics are
calculated from the time series of portfolio returns constructed from optimal thetas and
market/ factor monthly returns. The alfas (shown in percent per month) with respect to
the three generally accepted models are derived from regressing the portfolio returns on the
constant and monthly respective factors.

Factors Base C.Base 2 3 4 5 6 7 8 9 10
Size -7.70 -0.09 -0.09 -0.02 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09
Book-to-market 8.01 - - - - - - - - - -
Moment 7.64 - - - - - - - - - -
Call OTM Short IV - - - - - 2.23 1.58 - 1.73 2.96 2.10
Call OTM Short Skew - - - - - - - - - - -
Call OTM Long IV - - - - 1.09 - - 2.21 - 0.88 1.48
Call OTM Long Skew - - - - - - - -1.51 - - -
Call ATM Short IV - - -1.17 - - -1.44 - - -0.84 -0.31 -0.74
Call ATM Short Skew - - - - - - - - - - -
Call ATM Long IV - - - - -1.96 - - -2.62 - -2.26 -1.18
Call ATM Long Skew - - - - - - - 0.58 - - -
Put OTM Short IV - - - 2.18 - - 2.47 - 2.92 - 4.07
Put OTM Short Skew - - - - - - - - - - -
Put OTM Long IV - - - -0.19 - - - - - - -1.01
Put OTM Long Skew - - - - - - - - - - -
Put ATM Short IV - - - -0.83 - - - - -0.71 - -1.97
Put ATM Short Skew - - - - - - - - - - -
Put ATM Long IV - - - 0.12 - - - - - - 1.54
Put ATM Long Skew - - - - - - - - - - -
Utility whole sample 0.100 0.010 0.066 0.122 0.126 0.156 0.166 0.196 0.231 0.239 0.343
Util.diff:comb.-c.base -0.090 0.000 0.056 0.112 0.116 0.146 0.156 0.186 0.221 0.229 0.334
Util.diff:comb.-base 0.000 -0.090 -0.034 0.022 0.026 0.056 0.066 0.096 0.131 0.140 0.244
CE wr.t. Base 9.48 0.00 5.83 11.92 12.37 15.88 17.06 20.61 24.99 26.02 39.98
Port Return:mean 18.12 1.14 11.85 16.03 22.21 29.10 27.12 38.61 40.03 46.71 65.17
Port Return:std 39.79 5.28 33.49 26.09 45.94 52.62 42.87 73.43 54.67 75.25 77.64
Port Return:skew 0.222 -0.670 0.833 0.006 1.031 0.538 0.012 1.772 0.149 1.335 0.238
Port Return:kurtosis 3.309 3.253 4.951 3.242 5.089 3.839 2.752 7.735 3.100 6.812 2.811
Port Return:min -72.74 -16.73 -77.12 -47.10 -84.86 -82.18 -91.36 -88.26 -92.34 -88.42 -90.12
Port Return:max 137.57 9.66 149.50 96.81 188.97 197.57 126.94 356.90 203.12 386.04 287.37
Port Return:median 17.58 1.74 4.49 16.24 14.37 26.16 29.87 25.35 43.21 43.26 63.04
alfa w.r.t CAPM 17.49 0.23 10.49 15.37 20.73 27.08 26.25 36.82 38.70 44.27 63.53
alfa w.r.t FF 13.15 0.25 9.29 15.08 17.66 26.36 24.49 32.02 36.85 41.26 62.30
alfa w.r.t FF+MOM 12.22 0.33 9.22 13.78 18.19 27.30 23.72 33.02 35.79 43.19 60.91
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Table 13: θ Estimates, Constrained Case, γ = 1.8

This Table gives an overview of the portfolio policy estimation of an investor with CRRA
(γ = 1.8) utility (see Table 12 for the log utility) . Each column gives the estimated thetas
(bold italic significant at 5%, and just bold - at 10% levels) for various factor combinations,
and the mean level of utility over all monthly periods for the given thetas combination.
Base combination refers to an unconstrained case (Base in Table ??) without option factor
portfolios. C.Base combination refers to the constrained optimization problem without op-
tion factor portfolios. We calculate the utility improvement for each combination over the
base case and over the constrained base case (to test the significance of the utility difference
we use the time series of utilities for each combination pair to get the t-stat of the mean
difference). The certainty equivalent shows in percent how much more wealth an investor
would require for certain each month to achieve the same utility as in the current factor
combination if she already has the utility as in the base case. Next, the distributional char-
acteristics are calculated from the time series of portfolio returns constructed from optimal
thetas and market/ factor monthly returns. The alfas (shown in percent per month) with
respect to the three generally accepted models are derived from regressing the portfolio
returns on the constant and monthly respective factors.

Factors Base C.Base 2 3 4 5 6 7 8 9 10
Size -4.60 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09
Book-to-market 5.43 - - - - - - - - - -
Moment 4.98 - - - - - - - - - -
Call OTM Short IV - - - - 1.53 - 1.12 - 1.82 1.27 1.35
Call OTM Short Skew - - - - - - - - - - -
Call OTM Long IV - - - 1.01 - - - 1.56 0.77 - 1.15
Call OTM Long Skew - - - - - - - -1.02 - - -
Call ATM Short IV - - -0.77 - -1.01 - - - -0.35 -0.76 -0.45
Call ATM Short Skew - - - - - - - - - - -
Call ATM Long IV - - - -1.47 - - - -1.86 -1.45 - -1.00
Call ATM Long Skew - - - - - - - 0.45 - - -
Put OTM Short IV - - - - - 2.81 1.79 - - 1.99 2.85
Put OTM Short Skew - - - - - - - - - - -
Put OTM Long IV - - - - - -0.60 - - - - -0.64
Put OTM Long Skew - - - - - - - - - - -
Put ATM Short IV - - - - - -1.04 - - - -0.64 -1.14
Put ATM Short Skew - - - - - - - - - - -
Put ATM Long IV - - - - - 0.46 - - - - 0.71
Put ATM Long Skew - - - - - - - - - - -
Utility whole sample -1.190 -1.241 -1.210 -1.176 -1.160 -1.149 -1.145 -1.137 -1.111 -1.108 -1.048
Util.diff:comb.-c.base 0.052 0.000 0.032 0.065 0.082 0.092 0.096 0.104 0.130 0.133 0.194
Util.diff:comb.-base 0.000 -0.052 -0.020 0.013 0.030 0.041 0.045 0.052 0.078 0.082 0.142
CE w.r.t. base 5.49 0.00 3.32 6.99 8.95 10.23 10.73 11.65 14.95 15.39 23.83
Port Return:mean 11.54 1.14 8.17 17.63 20.58 20.13 19.82 27.65 31.89 30.23 46.27
Port Return:std 24.43 5.28 22.51 35.29 37.05 32.58 31.01 52.29 50.01 40.91 54.23
Port Return:skew 0.14 -0.67 0.87 0.99 0.56 0.12 0.05 1.80 1.35 0.18 0.31
Port Return:kurtosis 3.28 3.25 4.83 5.22 3.83 3.33 2.74 7.85 6.84 3.18 3.04
Port Return:min -45.30 -16.73 -49.90 -70.71 -57.28 -54.36 -64.00 -61.92 -71.31 -72.93 -66.29
Port Return:max 79.70 9.66 100.29 142.27 139.54 124.29 93.14 256.57 253.11 151.64 211.22
Port Return:median 11.86 1.74 3.22 11.19 18.93 20.06 20.02 17.90 28.88 31.96 44.23
alfa w.r.t CAPM 10.97 0.23 6.97 16.29 18.89 19.59 18.95 26.10 29.96 28.89 44.91
alfa w.r.t FF 8.09 0.25 6.18 14.08 18.38 19.72 17.67 22.67 27.94 27.73 43.69
alfa w.r.t FF+MOM 7.38 0.33 6.16 14.50 19.05 18.10 17.12 23.42 29.16 27.07 42.80
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