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1 Introduction

Solvency requirement becomes increasingly important with the insurance undertaking of

Solvency II which aims to provide a guide to the new framework for prudential regulation

in the EU. Together with the current trend of studying how to develop new regulatory

methods and tools in order to reduce the insolvency and to better the benefit of the policy

holders, it implies that the role of the regulator has been and will be more strengthened.

In fact, the current regulation is still to be strongly reinforced because the collapse of many

insurance companies is closely related to the insufficient regulation. For instance, the fall

of First Executive Life Insurance Co. provides important lessons in regulation of life insur-

ance companies.1 Conceiving this purpose, this paper investigates the insurance regulation

design with a special focus on the information transparency of insurance undertakings in

the regulation decision.

In the standard insurance regulation literature, it is often supposed that regulators have

full information on the insurer’s asset value. The nullification of this assumption can be

however justified by the fact that insurance companies have some firm-specific informa-

tion and regulators are able to use only information external to the firm, for instance, some

industry-wise measures. Indeed, the classical model rules out the situation where regulators

are not sure of the likelihood of states of the world, i.e., the future asset evolution of each

single insurance company. In other words, it adopts a strict assumption about regulators’

belief: they are perfectly certain of the objective probability law of the state process and

this belief is perfectly identical to the true probability law. However, regulators, as out-

siders, may not have perfect confidence on the perceived probability measure for insurance

companies’ future asset value. With imprecise information, he may claim the possibility

of other probability measures and has no idea of the true plausibility of those measures.

This is exactly the ambiguity defined by Knight [1921], which refers to the uncertainty to

the underlying probabilities. Through experiments and theoretical proofs, it has been long

demonstrated that such uncertainty is not reducible to a single probability and has a great

effect on decisions. Our work hence focuses on the impact of ambiguity on the insurance

regulations and on the design of proper regulation rules under ambiguity. To our knowl-

edge, it is the first paper involving ambiguity feature in the insurance modelling framework.

This paper first aims at showing the impact of the ambiguity on the regulation deci-

sions. The analysis is conducted in a simplified framework as proposed in the literature (c.f.

for instance Grosen and Jørgensen [2002]) to model default and bankruptcy, i.e., an stan-

dard bankruptcy regulation which does not distinguish between default and bankruptcy.

We mainly examine how regulators establish an optimal regulation (barrier) level as an

1C.f. Schulte [1991] provides an insider’s view on the the fall of First Executive Life Insurance Co.
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intervention under ambiguity. The barrier level is chosen such that the default probability

is restricted to some fixed limit, say, to have a default probability not higher than 1%. We

show then that risk-neutral but ambiguity-averse regulators determine the optimal barrier

level by choosing the worst scenario in all possible probability measures. Both analytical

and numerical results demonstrate that ambiguity obviously affects the default probabil-

ity and hence the regulation parameter determination. Especially, an ambiguity-averse

regulator will force the regulated firm to carry more equity in order to meet the default

probability constraint. This requirement in higher equity is not due to the higher riskiness

of the capital but due to the existence of ambiguity. In this sense, it is defined as “ambigu-

ity equity”. All these results imply that ambiguity issue should be taken into consideration

when designing insurance regulation.

As the second contribution of this paper, we show that an immediate default regulation

brings false liquidation under ambiguity with a positive probability and design a new de-

fault and liquidation model under ambiguity in order to better fit the ambiguity framework.

The conventional default modelling framework has an obvious drawback under ambiguity.

Bankruptcy may be declared by a regulator with beliefs Qθ (different from the real world

measure P ), even when the firm value is still sufficiently high (under P ). Such situations

cannot be avoided when default and liquidation are put into action simultaneously. An-

other regulation rule is hence required to well incorporate ambiguity. Instead of immediate

liquidation, our default and liquidation formulation contains a regulatory auditing rules

and hence prevents the mistaken liquidation resulted from ambiguity. In principle, firms

can only be liquidated when the firm’s asset value falls below the barrier level (under P ).

We then focus on the recognition and correction ability of the newly developed regulation

policy under ambiguity by analyzing the impact of debt ratio and the riskiness of the firm’s

asset on liquidation probability.

The model we develop in this paper follows two streams of literature. On the one hand,

it is related to the insurance default and regulation literature. In the existing literature

of default modeling, Briys and de Varenne [1994, 1997, 2001] first interpret the work of

Merton [1974, 1989] in an insurance context, in which only default at maturity is possi-

ble. Grosen and Jørgensen [2000, 2002] extends the model by allowing possible default at

any instant before maturity. Bernard, Le Courtois and Quittard-Pinon [2005, 2006] and

Chen and Suchanecki [2007] further extend Grosen and Jørgensen by either incorporating

stochastic interest rate or discussing more realistic bankruptcy procedures. In all the lit-

erature, the regulators act very passively in the sense of not taking any actions against

the collapse of the insurance company when it runs into default. This is apparently coun-

terfactual. Bernard and Chen [2008] carry out an analysis from a regulator’s viewpoint,

investigating how regulators can establish regulatory rules to meet some regulatory ob-
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jectives and finally to improve the benefits of the policyholders. In the first part of this

paper, we incorporate ambiguity and make a similar analysis as in Bernard and Chen [2008].

On the other hand, our work is related to the work of decision making under ambiguity.

The Ellsberg [1961] paradox first demonstrates that risk and uncertainty are (behaviorally)

meaningfully distinct from each other. The ambiguity theory is further prominently devel-

oped by Schmeidler [1989] (the Expected Utility Theory) and Gilboa and Schmeidler [1989]

(the Multiple Expected Utility theory). The present paper carries on the formulation of

the second theory, using the continuous-time implementation by Chen and Epstein [2002].

The incompleteness caused ambiguity is also applied by Nishimura and Ozaki [2004] in

irreversible investment.

The remainder of this paper is organized in the following way: Section 2 gives the model

framework and introduces Chen and Epstein’s [2002] model of ambiguity. The impact of

ambiguity on the determination of the regulation rules is demonstrated in Section 3 by

using the standard but simplified model of immediate bankruptcy regulation. Section 4

poses the problem of the conventional immediate bankruptcy policy under ambiguity. In

order to avoid the possible false liquidation due to ambiguity, a new audit regulatory rule

is then illustrated. Numerical results are provided on how the new regulation corrects

ambiguity. The result should be of interest to regulators as well as insurers. Finally,

Section 5 concludes the paper with a short summary of the results and an outlook on the

future research.

2 Model Setup

In this paper, we examine the regulation of an insurance company that offers only one type

of policy. These contacts grant policyholders a minimum interest rate guarantee and a

participation clause in the surpluses of the company’s value, if any. Such a product is fairly

popular and can be a with-profit contract as introduced in Bacinello [2001] or Ballotta

[2005] among others, a French participating contract in Briys and de Varenne [1994] as

well as an equity-linked product etc.. In addition to the standard model construction, we

involve ambiguity in the model and show its effects on the insurance regulation.

2.1 Adopted Framework

The standard assumptions of the Black and Scholes [1973] framework are made in this

paper. There exists a risk free asset which is continuously compounded with a constant

instantaneous interest rate r. Trading takes place continuously and there are no other

transaction costs, tax and so on.
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Guarantee payment A payment is provided to the policyholder at the maturity date

T , when there is no premature default. The payoff of the contract can be usually decom-

posed into three parts:

Guarantee + Call− Put,

namely, a guaranteed amount, a long position in a call option which is in effect a bonus

option given to policyholders as a participation in the performance of the firm’s assets and

a short position in a put (the default put). Particularly, it is assumed that a guarantee is

provided at the maturity date of the contract, T :

GT = G0 e
g T . (1)

The guaranteed amount corresponds to an initial investment G0 accumulated with a min-

imum continuously-compounded interest rate g. In order to protect insurers, regulators

usually establish certain regulatory rules. The whole effect of such regulations is absorbed

in the guarantee part; while the other two parts of call and put are designed by each single

insurance company as the highlights of the contract. Therefore, we are concerned in the

following analysis only with the guarantee part.

Premature default formulation A premature default is assumed to result in an

immediate liquidation. A premature liquidation occurs when the firm’s assets hit the

barrier level (which is set by the external regulators) before the maturity date and is

constructed as a first passage time problem. Generally, the critical barrier level Bt is set

up by regulators. Since the firm’s assets At should be high enough to meet the increasing

guaranteed amount, it is not unreasonable to assume a time-increasing barrier:

Bt(η, φ) = η G0 e
φ t, η <

A0

G0

(2)

for t ∈ [0, T ]. η < A0

G0
ensures that the insurance company is solvent at the contract-issuing

time. It should be pointed out that the barrier function Bt(η, φ) can exhibit quite flexible

patterns. It is observed that this time-varying barrier encompasses the exponential barrier

given in Grosen and Jørgensen [2002], Chen and Suchanecki [2007] and Bernard and Chen

[2008] by setting φ = g. Here, both η and φ can be used by the regulator to control

the strictness of the auditing rule. A high η or a high φ would lead to a high barrier

level. Because the default time is associated with the ambiguity specification, we postpone

introducing its mathematical formulation in a later section.
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2.2 Ambiguity: Uncertainty in the Underlying Probability Mea-

sures

Uncertainty and risk are usually not distinguished in the financial and actuarial literature.

However, according to Knight [1921], risk is the so-called “uncertainty” which can be re-

duced to a single probability; while the true uncertainty is not reducible. In the famous

urn experiment2, Ellsberg [1961] demonstrated that uncertainty, different from risk, has an

impact on decisions: one prefers known to unknown or ambiguous probabilities. Besides

in experimental settings, there are many obvious instances in our real life. For example,

ambiguity is addressed to explain the equity premium puzzle whereby the representative

agent model fails to fit historical averages of the equity premium and the risk-free interest

rate. With uncertainty in the underlying probabilities, it is argued that part of the pre-

mium is indeed due to the greater ambiguity associated with the return to equity, which

hence reduces the required degree of risk aversion. Meanwhile, Ellsberg’s findings suggest

that decision makers tend to be uncertainty or ambiguity averse.

Although risk and uncertainty are clearly distinct concepts, they are little treated sep-

arately in finance and almost never in insurance. Indeed, even if the firm has perfect

information on his own firm value’s future evolution, regulators and the insured do not.

This fact is utmost important in many aspects. Typically, regulators set up a certain

regulation with limited information. Most probably, they have only industry-specific prob-

ability measure and are not confident about the assets evolution of each single firm. This is

exactly the ambiguity defined by Knight. In turn, it exerts a great impact on the insurance

regulations. In the following, we formulate the ambiguity in such a way that the regulator

is not sure that a given (i.e. predicted for the entire industry) probability measure is the

true one. The regulators’ beliefs are constructed by a set of probability measures instead

of a single probability measure.

2.2.1 Ambiguity in Continuous Time

Assume that the insurance company has some firm-specific information and the regulator

can only use information external to the firm, for instance some industry-wide measures as

well as publicly available financial information of the insurer such as the insurer’s financial

reports or its share prices, if the insurer has demutualized. Therefore, the regulator has

2To roughly outline the Ellberg paradox, suppose that we have two urns. There are exactly 10 red and
10 blue balls in the first urn. The second one contains also altogether 20 balls either in red or in blue.
However, there is no clear number of red or blue balls. The experiment is designed to check the willingness
of persons who are offered a bet on drawing a red ball from the two urns. The result shows that a majority
of persons choose to draw from the first urn rather than the second. The result remains when drawing a
blue ball.
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uncertainty about the future evolution of the insurer’s assets and it is assumed that this

uncertainty is captured by ambiguity. In case of ambiguity, we make a crucial assumption

that the regulator can only observe the insurer’s initial firm value A0 and terminal value

AT . While At, t ∈ (0, T ), is not directly observable to the regulator unless a regulatory

auditing process is initiated against the insurer. More specifically, the regulator’s ambiguity

about the firm’s assets At is characterized by a set of priors PΘ which are equivalent to

the real world measure P . The set of the priors can be determined by constructing a set

of suitable densities which is further specified by a series of density generators Θ. Each

density generator (θt) ∈ Θ is assumed to be an R-valued process for which the process (zθt )

is a P -martingale, i.e.

dzθt = −zθt θt dWt, zθ0 = 1,

where Wt is a Brownian motion under P and θ satisfies the Novikov condition:

E

[
exp

{
1

2

∫ T

0

|θ|2ds
}]

<∞.

Solving this stochastic equation leads to

zθt = exp

{
−1

2

∫ t

0

|θs|2ds−
∫ t

0

θs · dWs

}
, 0 ≤ t ≤ T.

Given the set Θ of density generators, the corresponding set of priors is

PΘ =

{
Qθ : θ ∈ Θ and Qθ is defined by

dQθ

dP
= zθT

}
,

which is mutually absolutely continuous with respect to P . Let (W θ
t )t∈[0,T ] denote the

Brownian motion under Qθ, it holds dW θ
t = dWt + θtdt.

The above construction of ambiguity in continuous time follows basically the work of

Chen and Epstein [2002]. In this setup, it is assumed that the firm considers only a set of

probability measures that have perfect agreement with P with respect to zero probability

events. It implies that all probability measures considered in the paper are absolutely con-

tinuous with respect to P and one another, as given above.

Under the real world probability measure P , the firm’s value evolves according to the

following stochastic backward differential equation:

dAt = µAtdt+ σAtdWt, (3)

where µ and σ > 0 are instantaneous rate of return and volatility of the asset. Rather than

the single probability measure P , we now generalize the stochastic differential equation
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by allowing the regulator to employ the set PΘ. For a given Qθ ∈ PΘ which describes a

regulator with probability belief Qθ, the firm’s assets evolve as

dAθt = (µ+ σθt)A
θ
tdt+ σAθtdWt. (4)

In order to account for the fact Wt is not a Brownian motion under Qθ, the drift is adjusted

by the addition σθt compared to Equation (3).

We assume that the initial value Aθ0 = A0 takes the same value for all θ. Clearly, those

stochastic processes in the set PΘ vary only in the drift term. The uncertainty/ambiguity in

the probability measures gives rise to some different stochastic processes to specify or inter-

pret. Moreover, their confidence over probability measures is supposed to be not (greatly)

improved over time.3 Formally, it is not possible to learn the distribution of θ ∈ Θ, neither

to reduce the set PΘ over time.

As assumed in the literature, all the candidate probability measures are naturally not

widely from the industry-specific measure, but with a small deviation. In particular, the

density generators (θt) ∈ Θ is supposed to be restricted to the range [−κ, κ]. It is the

so-called κ−ignorance (Chen and Epstein [2002]) and κ can be considered as the degree

of Knightian uncertainty or ignorance. It is clear that there is no uncertainty if κ = 0.

When κ increases, it implies that regulators are less certain about how good the public

information (industry level) represents the individual firm’s performance.4

3 Optimal Standard Immediate Bankruptcy Rule un-

der Ambiguity

This section aims at investigating the impact of ambiguity on the regulation decisions

analytically. To this end, the standard immediate bankruptcy rule is considered. Under

the standard rule, the regulator declares liquidation of the firm immediately when the

proxy At breaches the predetermined default threshold. The premature default time or

premature liquidation time is defined as

τ := inf{t ≤ T |At ≤ Bt(η, φ).} (5)

3It is also plausible when considering that regulations are made for some amount of time without great
change.

4As shown in Chen and Epstein [2002], κ-ignorance is a special case of i.i.d uncertainty and
has the property of strong rectangularity, which are two critical conditions required by the ambigu-
ity theory. Especially, the strong regularity guarantees the optimality in a recursive structure, i.e.,

max
θ∈Θ

EQ
θ

[x|Fs] = max
θ∈Θ

EQ
θ
[
EQ

θ

[x|Ft]
∣∣∣Fs] = max

θ∈Θ
EQ

θ

[
max
θ′∈Θ

EQ
θ′

[x|Ft]
∣∣∣Fs]. The detailed technique is

referred to Chen and Epstein [2002].
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τ is the first passage time that At hits the barrier Bt(η, φ) from above. Similarly as in

Bernard and Chen [2008], it is assumed that the regulator acts as “default-probability min-

imizer”5. Formally, the regulator with Qθ-beliefs is concerned with the default probability

Qθ (τ ≤ T ) . (6)

It shall be emphasized that a Qθ-regulator’s regulation policy is based on the belief-

constructing probability measure Qθ rather than the real world measure P .

Proposition 3.1 (Default Probability) A“default-probability minimizing”regulator with

Qθ-beliefs, who is concerned with the default probability

Qθ (τ ≤ T ) , (7)

under κ-ignorance, i.e., (θt) ∈ Θ are restricted to the range [−κ, κ], achieves the minimum

default probability when the ambiguity parameter equals to the “lower-rim density generator”

−κ

min
θ∈Θ

Qθ (τ ≤ T ) = Q−κ (τ ≤ T ) = N
(
dT2 (µ̂∗)

)
+

(
A0

ηG0

)−2µ̂∗

σ2

N
(
dT1 (µ̂∗)

)
(8)

with µ̂∗ = µ+ σκ− φ− σ2

2
. The maximum default probability is obtained when θ = κ:

max
θ∈Θ

Qθ (τ ≤ T ) = Qκ (τ ≤ T ) = N
(
dT2 (µ̂∗∗)

)
+

(
A0

ηG0

)−2µ̂∗∗

σ2

N
(
dT1 (µ̂∗∗)

)
(9)

with µ̂∗∗ = µ− σκ− φ− σ2

2
.

Proof: According to the firm’s assets evolution in Equations (3), it is possible to calculate

this cumulative default probability in closed form (c.f. e.g. Karatzas and Shreve [1991]):

Qθ (τ ≤ T ) = Qθ

(
inf

t∈[0,T ]
µ̂ t+ σW θ

t < D0

)
= N

(
dT2 (µ̂)

)
+

(
A0

ηG0

)−2µ̂

σ2

N
(
dT1 (µ̂)

)
dT2 (µ̂) =

ln(ηG0

A0
)− µ̂T

σ
√
T

dT1 (µ̂) =
ln(ηG0

A0
) + µ̂T

σ
√
T

(10)

with µ̂ = µ−σθ−φ− σ2

2
and D0 = 1

σ
ln ηG0

A0
. In the first step we have used the substitution

Wt = W θ
t − θt.

5Solvency II advocates a risk-based regulation which focuses on downside risk, i.e. it is likely to require
insurance companies to use measures such as probability of ruin, value-at-risk or tail value-at-risk. In our
context, the regulator tries to control the ruin probability by establishing regulation rules.
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It is trivial that θ has the reversed effect on the cumulative default probability as µ̂. This

simplifies the problem of how the ambiguity parameter influences the default probability

by checking the effect of µ̂ on the probability. To this end, the derivative of the default

probability with respect to µ̂ is calculated

∂Qθ(τ ≤ T )

∂µ̂
= −

√
T

σ
n(dT2 (µ̂))− 2

σ2
ln

A0

ηG0

(
A0

ηG0

)−2µ̂

σ2

N(dT1 (µ̂)) +

√
T

σ

(
A0

ηG0

)−2µ̂

σ2

n(dT1 (µ̂))

= − 2

σ2
ln

A0

ηG0

(
A0

ηG0

)−2µ̂

σ2

N(dT1 (µ̂)) < 0, (11)

where n(x) = 1√
2π
e−

x2

2 denotes the density of a standard normally distributed random

variable x and the second step is shown by the following argument:

−
√
T

σ
n(dT2 (µ̂)) +

√
T

σ

(
A0

ηG0

)−2µ̂

σ2

n(dT1 (µ̂))

= −
√
T

σ

1√
2π
e−

(dT2 )2

2 +

√
T

σ

1√
2π
e−

(dT2 )2

2

(
A0

ηG0

)−2µ̂

σ2

exp

{
−2dT2 µ̂

√
T

σ

}
exp

{
−2µ̂2T

σ2

}

= −
√
T

σ

1√
2π
e−

(dT2 )2

2 +

√
T

σ

1√
2π
e−

(dT2 )2

2

(
A0

ηG0

)−2µ̂

σ2
(
ηG0

A0

)−2µ̂

σ2

exp

{
2µ̂2T

σ2

}
exp

{
−2µ̂2T

σ2

}
= 0.

The negative relation between the default probability and µ̂ indicates that the default

probability goes up with the ambiguity parameter θ. Therefore, it holds

min
θ∈Θ

Qθ (τ ≤ T ) = Q−κ (τ ≤ T ) . (12)

max
θ∈Θ

Qθ (τ ≤ T ) = Qκ (τ ≤ T ) . (13)

In other words, under κ-ignorance, i.e. (θt) ∈ Θ are restricted to the range [−κ, κ], the mini-

mum default probability is achieved when the ambiguity parameter equals to the“lower-rim

density generator” κ and is given by

min
θ∈Θ

Qθ (τ ≤ T ) = N
(
dT2 (µ̂∗)

)
+

(
A0

ηG0

)−2µ̂∗

σ2

N
(
dT1 (µ̂∗)

)
(14)

with µ̂∗ = µ+ σκ− φ− σ2

2
and the maximum default probability is obtained when θ = κ:

max
θ∈Θ

Qθ (τ ≤ T ) = N
(
dT2 (µ̂∗∗)

)
+

(
A0

ηG0

)−2µ̂∗∗

σ2

N
(
dT1 (µ̂∗∗)

)
(15)

with µ̂∗∗ = µ− σκ− φ− σ2

2
.



3 OPTIMAL STANDARD IMMEDIATE BANKRUPTCY RULE UNDER AMBIGUITY11

The regulator will establish the regulation level, or more specifically the barrier level,

in order to meet the solvency requirement. In contrast to Bernard and Chen [2008], the

regulator owns now two regulation parameters η and φ. Trivially, the default probability

decreases with both η and φ. For a given φ, the lower η is, the lower the barrier level is,

and the less likely the firm’s asset will hit the barrier. For a given η, the same relation

holds for φ and the default probability. As η approaches 0, the default probability goes

asymptotically to zero, i.e.,

lim
η→0

Qθ (τ ≤ T )→ 0.

Moreover, any positive η-value would lead to a positive default probability. As φ approaches

zero, the barrier level becomes a constant equal to ηG0. Thus, we assume that the regulator

aims at achieving a default probability constraint ε, which in turn helps us (numerically)

determine the optimal regulation level η or φ. As shown in the literature, a decision maker

with ambiguity-aversion behaves according to the worst scenario rule. This basic rule is

also examined in our context.

Proposition 3.2 (Ambiguity Aversion) An ambiguity-averse regulator behaves accord-

ing to the worst scenario rule. Namely, he chooses the optimal regulation level which makes

the worst scenario - maximal default probability- below the default probability constraint,

i.e.,

max
η or φ

max
θ∈Θ

Qθ(τ ≤ T ) ≤ ε.

Proof: The inner max problem of the objective function is already solved in the previous

proposition. Given the maximum value at θ = κ, the default probability increaes with the

two regulation levels η and φ. By increasing their values, the default probability rises.

Thus, they can be numerically determined given the maximal default probability ε.

Since the emphasis of this part is laid on how ambiguity affects the insurance regulation,

we do not restrict ourself to ambiguity-averse regulators. We allow “ambiguity-friendly”

regulators, i.e. we are interested in formulating in what range of the optimal regulation

level falls when an ambiguity regulator with κ degree of ignorance is considered. As shown

above, the ambiguity-averse regulator behave according to the worst scenario rule. In

contrast, an ambiguity-friendly regulator is taking κ degree of ignorance and chooses an

optimal regulation level to make the most optimistic scenario - minimal default probability

- binding, i.e.

max
η or φ

min
θ∈Θ

Qθ(τ ≤ T ) = ε.

Table 1 and 2 provide some optimal η and φ values, respectively. η∗ (φ∗), η∗κ (φ∗κ) and

η∗−κ (φ∗−κ) denote the optimal η (φ) obtained for regulators with ambiguity-neutral, averse

and friendly regulators. First, a positive relation between η and the default probability

constraint ε is observed, and also that between η and φ. Besides, η (φ) declines with the
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σ = 0.10 σ = 0.15
ε

η∗ η∗κ η∗−κ η∗ η∗κ η∗−κ

0.01 0.73818 0.68413 0.79078 0.47162 0.43378 0.51114

0.02 0.79008 0.73536 0.84197 0.52718 0.48629 0.56934

0.03 0.82347 0.76879 0.87437 0.56479 0.52211 0.60839

0.04 0.84867 0.79431 0.89853 0.59424 0.55032 0.63875

0.05 0.86915 0.81524 0.91799 0.61888 0.57405 0.66400

0.06 0.88653 0.83314 0.93436 0.64031 0.59478 0.68583

0.07 0.90169 0.84887 0.94855 0.65942 0.61335 0.70521

0.08 0.91519 0.86297 0.96110 0.67676 0.63027 0.72271

0.09 0.92738 0.87578 0.97238 0.69271 0.64589 0.73873

0.10 0.93853 0.88756 0.98263 0.70752 0.66045 0.75355

Table 1: Optimal η levels with parameters:

A0 = 100; G0 = 80; T = 10; µ = 0.06; g = 0.02; κ = 0.01/σ; φ = 0.02.

volatility σ. A higher volatility leads to a higher default probability, as a compensation,

either η or φ shall be set lower to meet the same default constraint ε. More importantly,

regulators’ attitude towards ambiguity delivers an obvious effect on the optimal η and hence

the barrier level. Moving from the extreme case of θ = κ (ambiguity aversity) to θ = −κ
(ambiguity-friendliness) results in an increase in the optimal η value by over 10% and a

quite big difference in the barrier level between 6.4 and 8. Comparing η∗κ and η∗κ with η∗, if

the regulator uses η∗κ to determine the optimal barrier level, under P the real firm’s value

falls below the barrier indeed with a smaller probability than ε. On the contrary, under P

the real firm’s value falls below the barrier with a larger probability than ε, while using η∗−κ.

Clearly, an ambiguity-averse regulator requires a much lower regulation level (and hence

the barrier level) to achieve the same default probability. If an optimal regulation level

η∗ (optimal for an ambiguity-neutral regulator) is applied to an regulator who is indeed

ambiguity-averse, a higher default probability (than the default probability constraint) re-

sults. In other words, an ambiguity-averse regulator will ask for some“ambiguity premium”

to achieve the same default probability. This term is first invented by Chen and Epstein

[2002] in the context of equity premium puzzle. Instead of the usually-recognized premium

for the riskiness of equity, it is the premium due to greater ambiguity associated with the

return to equity. Similarly, some additional premium is required in this paper by ambiguity.

More specifically, it can be a requirement in the capital structure of insurance companies.

Obviously, by increasing the investment of the equity holder, the default probability is to

some extent reduced. We thus call this additional equity requirement“ambiguity equity”.
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σ = 0.10 σ = 0.15
ε

φ∗ φ∗κ φ∗−κ φ∗ φ∗κ φ∗−κ

0.01 0.06625 0.05625 0.07625 0.01278 0.00278 0.02278

0.02 0.07509 0.06509 0.08509 0.02660 0.01660 0.03660

0.03 0.08068 0.07068 0.09068 0.03532 0.02532 0.04532

0.04 0.08489 0.07489 0.09489 0.04185 0.03185 0.05185

0.05 0.08831 0.07831 0.09831 0.04715 0.03715 0.05715

0.06 0.09122 0.08122 0.10122 0.05165 0.04165 0.06165

0.07 0.09376 0.08376 0.10377 0.05559 0.04559 0.06559

0.08 0.09605 0.08605 0.10605 0.05911 0.04911 0.06911

0.09 0.09812 0.08812 0.10812 0.06231 0.05231 0.07231

0.10 0.10003 0.09003 0.11003 0.06525 0.05525 0.07525

Table 2: Optimal φ levels with parameters:

A0 = 100; G0 = 80; T = 10; µ = 0.06; κ = 0.01/σ; η = 0.5.

Table 3 illustrates the ambiguity equity as a function of the default probability con-

straint ε and of ignorance degree κ for three volatility levels. The higher the allowed

default probability level ε, the more tolerant the regulator, the less ambiguity equity an

ambiguity-averse regulator requires. Furthermore, the ambiguity equity increases in the

degree of ignorance. That is, the more ambiguity averse the regulator is, the more ambigu-

ity equity results. Please note that the ambiguity equity is indeed quite high overall. For

instance, for a κ = 0.7 (σ = 0.2), the required equity shall be increased by 8.55075, which

corresponds to an increase in equity by 42.75%. The ambiguity equity is then observed to

rise with the volatility of the firm value.

Ambiguity is usually ignored in the literature and regulators considered in the most

models are assumed to be ambiguity-neutral. The designed default probability ε is then

not able to be achieved in reality where incomplete information or ambiguity is observed

and especially when the regulator is ambiguity-averse. Ambiguity-averse regulators behave

themselves more “conservatively” and admit the “worst-scenario” rule, which corresponds

to the case θ = κ in this context where a maximum default probability results and the

optimal regulation level turns out to be lower than the ambiguity-neutral case. As a result,

a special attention is called for by both theory and practice to ambiguity issue in the

regulation design and optimal barrier level determination.
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Ambiguity equity
ε

σ = 0.10 σ = 0.15 σ = 0.20

0.01 5.85795 6.41898 6.65300

0.02 5.54101 6.20525 6.48772

0.03 5.31166 6.04629 6.36416

0.04 5.12418 5.9132 6.26013

0.05 4.96221 5.7957 6.16774

0.06 4.81775 5.68878 6.08317

0.07 4.68623 5.58958 6.00424

0.08 4.56474 5.49628 5.92958

0.09 4.45132 5.40768 5.85825

0.10 4.34457 5.3229 5.78959

Ambiguity equity
κ

σ = 0.10 σ = 0.15 σ = 0.20

0.005/σ 2.43446 2.90925 3.12005

0.006/σ 2.93338 3.48877 3.73554

0.007/σ 3.43583 4.06728 4.34808

0.008/σ 3.9416 4.64467 4.95766

0.009/σ 4.45046 5.22084 5.56422

0.010/σ 4.96221 5.7957 6.16774

0.011/σ 5.47662 6.36916 6.76818

0.012/σ 5.99347 6.94113 7.36552

0.013/σ 6.51256 7.51152 7.95972

0.014/σ 7.03365 8.08025 8.55075

Table 3: Ambiguity equity with parameters: A0 = 100; G0 = 80; T = 10; µ = 0.06; g =

0.02; κ = 0.01/σ;φ = 0.02, ε = 0.05 (right table).

4 Regulatory Auditing Rules under Ambiguity

As demonstrated in the previous section, ambiguity indeed has a great effect on the regula-

tion design in the classical model setup where default and liquidation event are equivalent.

More importantly, it is easily observed from the above derivation that the regulation deter-

mination heavily depends on the regulator’s beliefs Qθ. Thus, under the standard imme-

diate bankruptcy rule with ambiguity, the regulators with Qθ might declare bankruptcy of

the firm although the firm still performs very well under the real world measure P . Under

κ-ignorance, i.e., θ ∈ [−κ, κ], the probability that the Qθ-regulator declares liquidation

although the firm’s asset does not hit the barrier under the real world measure is given in

the following proposition.

Proposition 4.1 (False Bankruptcy Declaration) A Qθ-regulator falsely declares liq-

uidation, although the firm’s asset does not hit the barrier under P , with the probability

of

P
(
{τ−θ ≤ T and τ > T}

)
= N

(
D0 − µ̂T
σ
√
T

)
+

(
A0

ηG0

)−2µ̂

σ2

N

(
D0 + µ̂T

σ
√
T

)
−

(
N

(
D0 −mT
σ
√
T

)
+

(
A0

ηG0

)−2m

σ2

N

(
D0 +mT

σ
√
T

))
,

where m = µ− φ− 1
2
σ2 and D0 = ln ηG0

A0
.

Proof: Please note first that it holds Qθ(τ < T ) = P (τ−θ < T ), where τ−θ is defined

similarly as τ :

τ−θ := inf{t ≤ T |A−θt ≤ Bt(η, φ)}. (16)
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σ 0.10 0.12 0.14 0.16 0.18 0.20

Probability 0.012 0.0282 0.0443 0.0566 0.0645 0.0684

Table 4: Probability of Type-I errors with

A0 = 100; G0 = 80; T = 10; µ = 0.06; g = 0.02; κ = 0.01/σ; φ = 0.02.

It says that the probability that a Qθ-regulator claims default and liquidation coincides with

the probability that under P that A−θt (c.f. Equation (4)) hits the barrier before maturity.

Therefore, the event of false liquidation can be captured mathematically as follows:{
τ−θ ≤ T and τ > T

}
. (17)

The probability for the occurrence of event (17) can be solved by using the similar

techniques as in Proposition 3.1.

This can be analogously considered as Type-I error in statistics “the null hypothesis is

correct but still be rejected”. As an illustrative example, Table 4 lists the probability of

type I error under the the standard immediate default and liquidation framework for the

ambiguity-averse regulator. For an ambiguity-averse regulator (worst scenario θ = κ), the

false-liquidation event is equivalent to

{
τ−κ ≤ T and τ > T

}
=

{
inf
t≤T
{µ̂∗∗t+ σWt} < D0 and inf

t≤T
{mt+ σWt} > D0

}
. (18)

The more risky the insurer’s assets are, the more likely the Type I error occurs. Through

this, the standard regulation rule turns out to be suboptimal with the time going on. This

ex-post sub-optimality fact has been recognized in the literature. Bernard and Chen [2008]

point out that an ex-ante optimal regulation level ceases to be optimal when the insurance

company follows a risk management strategy with a non-constant volatility. In contrast,

our work focuses on the information lackage/ambiguity issue. In order to mitigate the effect

of ambiguity and the possible mistaken liquidation resulted from ambiguity, we illustrate

in this section a new regulation rule by introducing an auditing process, which leads to a

different formulation between the default and liquidation event.

4.1 Regulation Design

In Section 2.2.1, when determining the optimal regulation levels, the Qθ-regulators indeed

assumes that a premature liquidation is caused when according to their beliefs At hits the

barrier (or under P , A−θt hits the barrier). However, in reality, the regulator should not

declare liquidation of the insurance company immediately, when A−θt hits the barrier but

the real asset value at that time At is still rather high under the real world measure. This
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subsection aims to design a realistic default and liquidation mechanism where liquidation

becomes in effect, only when the real assets value At (instead of A−θt ) under P is below the

barrier level. This differs from Grosen and Jørgensen [2002] and Bernard and Chen [2008].

Please note the following new default and liquidation mechanism is designed to solve the

false liquidation problem. It just illustrates one possible way to better incorporate ambi-

guity in the default and liquidation design and can be replenished by adding some other

realistic perspectives, e.g. by incorporating bankruptcy costs in the model and/or allowing

the firm to be reorganized after premature liquidation.

A regulatory auditing process against the insurer’s firm value At is initiated when-

ever the monitored proxy hits the deterministic time-dependent barrier Bt(η, φ) over the

monitoring times. In reality, the regulators either cannot carry out continuous monitor-

ing or auditing or are not willing to do so due to high monitoring and/or auditing costs6.

Therefore, in what follows, we suppose that the regulator monitors At at a set of selected

equidistant time points on (0, T ):

T = {t1, t2, ..., tN−1}, tj =
jT

N
, j = 1, ..., N − 1, (19)

with tN = T . Both proxy monitoring and regulatory auditing occur only at the time points

containing in T ∪ {0, T}.

Suppose that it holds that a regulator with Qθ-beliefs observe that At̄ ≤ Bt̄(η, φ) for

the first time at some particular t̄ ∈ T . Then, the auditing process is immediately in effect

and there are two possible auditing outcomes at t̄ (under the real world measure P ):

(a) At̄ ≤ Bt̄(η, φ),

(b) and At̄ > Bt̄(η, φ).

We assume that at time t̄ the regulator resets his beliefs to the real world measure, i.e.

A−θt̄+ = At̄. When (1) occurs, the insurer is liquidated immediately as the insurer’s true

firm value has hit some “dangerous” level from the regulator’s viewpoint. An immediate

liquidation is therefore called for to protect the policyholder from further loss. Under

scenario (2), the liquidation is not to be carried out since the insurer’s prevailing true value

is above the auditing level set by the regulator. Upon updating the insurer’s proxy, the

auditing process is stopped and the regulator resumes its usual monitoring process against

the proxy. Since we have assumed that the regulators’ confidence over probability measures

is supposed to be not improved over time. It indicates that the regulators do not learn

about the distribution of θ at time t̄ and do not reduce the set PΘ over time. Note that

6Cost of enforcement includes both the necessary public funding (e.g. salaries of bureaucrats and judges,
paperwork, investigations, etc.) and the compliance costs borne by audit firms.
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under this case the auditing process may be initiated again at a later time depending on

the future evolution of the proxy. Though the regulator has full access to all historical

data of At for t < t̄ at time t̄, we have assumed that the regulator has to “forgive” and

“forget” even if the regulator finds At < Bt(η, φ) for some t < t̄ under (2). This assumption

is not completely unreasonable since only the prevailing value is relevant to the insurer’s

insolvency at the current moment, but not its past values. Let τL denote the liquidation

time of the insurer. The specification above allows us to write

τL = inf
{
t ∈ T ∪ {0, T}

∣∣A−θt ≤ Bt(η, φ), At ≤ Bt(η, φ)
}
. (20)

Under this setup, the auditing triggering event is not equivalent to the liquidation event.

The auditing process initiated only allows the regulator to gain access to the true historical

evolution of the insurer’s firm value At.

To help understand the model specification described above, we display in Figure 1

four simulated scenarios for A−θt and At. The black line in the figure represents the barrier

Bt(η, φ), and the blue and red curves are the simulated paths of At and A−θt , respectively.

According to the regulation design, the simulated paths of A−θt and At on Panel 1, 2 and

3 do not lead to liquidation, although the insurer’s firm value sometimes falls below the

liquidation barrier. In the case of Panel 2 and 3, even no auditing takes place throughout

the term of the contract, as the levels of the proxy A−θt stay always above the auditing

triggering barrier. On Panel 3, the real evolution of the firm’s asset is for all the time

above the barrier level; while the insurer on Panel 2 escapes from the potential liquidation,

because At does hit the barrier once. The fact A−θt stays all the time above the barrier

under this scenario causes no auditing. On panel 1, the auditing has been triggered before

the maturity date. However, the real firm’s value is still above the barrier at the auditing

time. Hence, no liquidation occurs at this time. Finally on Panel 4, before auditing is im-

plemented, the firm’s asset has breached the barrier. Nevertheless, the firm cannot escape

from a premature liquidation and the liquidation time is indeed identified when both A−θ

and A simultaneously fall below the barrier for the first time. Therefore, the new default

and liquidation mechanism avoids implausible liquidation (like Panel 1) enforced under

the classical default and liquidation framework in which the regulator enforces liquidation

according to their beliefs Qθ (Technically speaking, it is equivalent to declare liquidation

based on the evolution of A−θt only.)

Again, we are interested in risk measures like liquidation probability. Unfortunately,

it is difficult (if not impossible) to compute the the risk measure analytically under our

model, unless N is small. The main difficulty arises from the fact that the auditing process

can be triggered at multiple times before maturity. Analytical computation requires us to

keep track of the sample paths where there exist multiple auditing triggering times. Given
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Figure 1: Simulated scenarios for A−θt (red) and At (blue): A0 = 100,
G0 = 80, µ = 5%, σ = 20%, η = 80%, φ = 2%, T = 10,N = 30, κ = 0.01/σ.
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the long term nature of the participating contract, N is usually large enough to prevent

us from characterizing such sample paths in a tractable way. Fortunately, the discrete

monitoring setup allows us to construct simple simulation algorithms for computing the

liquidation probability. We therefore resort to Monte Carlo simulation as the main tool for

our analysis in the remainder of this paper.

4.2 Numerical result

We illustrate some numerical results concerning the liquidation probability under the real-

istic model setup we propose. Throughout the simulation, a sample size of 100, 000 is used.

The analysis is firstly carried out to investigate the impacts of the volatility σ under

different debt equity ratio (D/E) and Table 5 provides the corresponding values. With

A0 = 100, assuming a D/E of 4 and 1 is equivalent to setting G0 to 80 and 50, respectively.

From the table, it is clear that the D/E has a great impact on the liquidation probability.

For example, for σ = 0.16 and κ = 0.01/σ, default happens to the firm with a probability

of 14.09% when D/E = 4 (under the regulation of an ambiguity-averse regulator), whereas

the probability reduces to 1.39% when D/E = 1. This suggests that the insurer has a

high probability to be liquidated if its initial equity contribution is too low compared to

its initial debt. It interprets exactly the ambiguity equity introduced in Section 3.

As expected, the liquidation probabilities are increasing in σ. For σ = 0.1, quite low

liquidation probability results. However, a lower liquidation probability does not necessar-

ily mean that the policyholder is better protected. For example, the regulator can always

achieve a lower liquidation probability by reducing the magnitude of η or φ. By doing so,

however, the amount of payment received by the policyholder in the event of liquidation

is expected to be lower. Hence, the policyholder is less protected from this viewpoint. In

practice, the bankruptcy of a large-sized insurer can leave many households in financial

distress which imply a large amount of settlement, adminstration, and legal costs born by

the regulator. Hence, it is nevertheless of great importance for the regulator to ensure that

the insurer has a reasonably low shortfall probability. If one takes the insurer’ standpoint,

then a lower shortfall probability, of course, is always advantageous.

κ-value determines the attitude of the regulator towards ambiguity. According to the

analysis of Section 3, ambiguity-averse regulators act following the worst-scenario rule,

whereas ambiguity-friendly regulators act extremely optimistically. The more ambiguity-

averse the regulator is, the higher default probability turns out. In contrast, the more

ambiguity-friendly the regulator is, the small liquidation probability results. An ambiguity-

averse regulator enforces default and liquidation as if he uses an underestimated proxy for
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monitoring and auditing, which leads to more frequent auditing processes. Consequently,

it is more likely that the company is found out bankrupt. Certainly, a reversed reasoning

shall hold for the ambiguity-friendly regulators. An ambiguity-neutral regulator behaves

moderately and causes a shortfall probability inbetween.

σ
D/E

0.10 0.12 0.14 0.16 0.18 0.20

LP (Amb.-friendly) 4 0.0171 0.0472 0.0864 0.1409 0.1848 0.237
(κ = 0.01/σ) 1 0.0001 0.001 0.0063 0.0139 0.0304 0.0487

LP (Amb.-averse) 4 0.0308 0.0698 0.1204 0.1724 0.2388 0.2844
(κ = 0.01/σ) 1 0.0005 0.0021 0.008 0.0203 0.0401 0.0719

LP (Amb.-friendly) 4 0.0082 0.0323 0.0688 0.1134 0.1668 0.2084
(κ = 0.02/σ) 1 0.0001 0.0011 0.0037 0.0098 0.0238 0.0424

LP (Amb.-averse) 4 0.0346 0.0804 0.1304 0.1881 0.2494 0.3003
(κ = 0.02/σ) 1 0.0002 0.0039 0.0112 0.0244 0.0456 0.0665

LP (Amb.-friendly) 4 0.0006 0.0079 0.0239 0.0516 0.0825 0.133
(κ = 0.05/σ) 1 0.0001 0.0002 0.0004 0.0032 0.0078 0.0184

LP (Amb.-averse) 4 0.0400 0.0988 0.1492 0.2194 0.2887 0.3397
(κ = 0.05/σ) 1 0.0003 0.0033 0.0112 0.0259 0.0514 0.0853

Table 5: Liquidation probabilities (LP) for different σ values with parameters:

A0 = 100; η = 0.8; µ = 0.05; r = 0.03; T = 10; N = 10; g = 0.02; φ = 0.03.

5 Conclusion

This paper investigates the substantial effect of ambiguity on insurance regulator’s opti-

mal regulation decisions. In particular, ambiguity in this paper refers to the imperfect

information that insurance regulators hold about the insurance firms’ future asset evolu-

tion, In this sense, our work stresses the importance of strengthening the transparency of

the insurance undertaking. We calculate ambiguity equity for an ambiguity-averse regu-

lator which is a similar concept as “ambiguity premium”. Both theoretical and numerical

result shows that higher equity is required just because of ambiguity in order to reach

the desired default probability constraint. Furthermore, the paper demonstrates that an

immediate bankruptcy policy falsely declares liquidation with a positive probability and

therefore illustrates an auditory regulation rule to avoid the false declaration. This policy

distinguishes the default and liquidation event, and takes an audit process before declaring

backruptcy. It should be noted that our newly-developed auditory regulation rule is still
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not perfectly realistic. For instance, one of crucial factor to consider in this model is the

benefit and cost of the auditing process. This is nevertheless ignored in the current work,

which focuses on fixing the problem of immediate bankruptcy regulation under ambiguity.

Further extension can be profit-cost analysis and also the learning process of regulators.
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