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Defined benefit pension liabilities are usually computed by discounting promised future pen-

sion payments using the yields on either risk-free or AA-rated bonds. We argue that a pension 

plan in financial distress should use discount rates that reflect the inherent funding risk. We 

propose a new valuation approach that utilizes the term structure of funding-risk-adjusted dis-

count rates. These discount rates depend on the current asset allocation of the pension plan 

which affects expected future funding ratios. We show that an optimal asset allocation which 

accounts for this dependency varies in a highly nonlinear way with the initial funding ratio of 

the pension plan. In particular, the optimal allocation to stocks is higher than conventionally 

determined when the level of underfunding is severe, but lower when the level of underfund-

ing is only moderate.   

Key words: term structure, funding risk, funding spread, asset-liability management, pen-

sion plan 

 

1. Introduction 

One of the fundamental insights of modern financial economics states that promised future cash flows 

should be discounted using (a term structure of) discount rates that appropriately reflect the risks un-

derlying those cash flows. This paper proposes a term structure of discount rates for valuing pension 

benefits in the presence of funding risk. This is the risk that the future funding positions of a defined 

benefit (DB) pension plan are insufficient to guarantee the promised pension benefits.1 It resembles 

the well-known credit risk which describes the risk that the issuer of a corporate bond fails to pay the 

                                                 
1 Although corporate DB pension plans are increasingly being replaced by defined contribution plans, DB plan assets are still 

substantial and amounted to $6.4 trillion in the U.S. alone at the end of 2006 (Watson Wyatt, 2007).  



J. Inkmann and D. Blake: Pension Liability Valuation and Asset Allocation in the Presence of Funding Risk 2

interest or principal. It is now standard practice to value corporate bonds and credit derivatives using a 

term structure of issuer-specific credit spreads over the term structure of interest rates (see, for exam-

ple, Das and Sundaram, 2000). By contrast, DB pension liabilities are valued using discount rates 

which completely disregard funding risk, as previously recognized by Petersen (1996) and Ippolito 

(2002). Funding risk is plan specific (in the same way that credit risk is issuer specific), since it de-

pends on the current funding ratio of plan assets to plan liabilities, on the sponsor’s ability to close 

funding gaps over time, and on decisions of the sponsor that affect future funding ratios. 

 In this paper, we will derive a term structure of funding spreads which appropriately reflects the 

funding risk of the pension plan. The funding spreads are endogenous (as recognized by Duffie and 

Singleton, 1999) in the sense that they are dependent on expected future funding ratios and, thus, on 

the current asset allocation of the pension plan. Petersen (1996) predicted our result: “As the firm 

shifts the pension assets from low risk assets (cash) to higher risk assets (stocks), the discount rate 

will rise only if the pension liability does not remain risk free.” When the optimal asset allocation de-

pends on an objective function in the funding-risk-adjusted (FRA) liability, required discount rates 

and optimal portfolio weights are interdependent and can be jointly determined in a single optimiza-

tion step. We illustrate this by introducing the term structure of funding spreads in the asset-liability 

model proposed by Hoevenaars et al. (2008), which, in turn, builds on the asset allocation models of 

Campbell et al. (2003) and Campbell and Viceira (2005). Hoevenaars et al. consider an objective 

function in the conditionally expected utility of the terminal funding ratio. We modify that objective 

function by introducing FRA liabilities and show that optimizing this new function with respect to the 

asset allocation will automatically generate the desired term structure of funding spreads and hence a 

value for the pension liability that appropriately reflects funding risk. However, in contrast with the 

optimal asset allocation obtained by Hoevenaars et al. (2008), the optimal portfolio implied by our 

methodology will depend on the initial funding ratio of the pension plan. This should come as no sur-

prise, since the initial funding ratio affects the term structure of funding spreads which is determined 

jointly with the optimal portfolio. 

2.  Background  
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2.1 Pension Accounting 

Before discussing our model in more detail, it is worth taking a closer look at existing practice in pen-

sion liability valuation. We need to distinguish between practice before and after the release by the 

U.S. Financial Accounting Standards Board (FASB) of Statement No. 87 concerning “Employers’ 

Accounting for Pensions” which came into force for the fiscal years after December 15, 1986. Prior to 

FAS 87, companies sponsoring a DB pension plan used a wide array of assumptions to determine the 

market value of plan liabilities. Feldstein and Mørck (1983) showed that the discount rates assumed 

for the valuation of pension liabilities ranged from 5 percent to 10.5 percent for a sample of large 

manufacturing firms in 1979. The authors discover evidence that the precise choice was determined 

by a sponsoring company’s trade-off between the tax advantage of a low discount rate and the cos-

metic benefit to the annual report arising from a high discount rate; high discount rates could also be 

used to escape a Department of Labor request for additional contributions to the pension plan. Bodie 

et al. (1987) found evidence that more profitable firms use lower discount rates to calculate pension 

liabilities in an attempt to smooth corporate earnings. Overall, before FAS 87, the choice of discount 

rate appeared to be guided more by strategic management considerations than by the exercise of fidu-

ciary responsibility towards plan beneficiaries by plan sponsors.   

 FAS 87 reduced the discretion sponsoring companies had over the choice of the discount rate. The 

Statement requires that “assumed discount rates shall reflect the rates at which the pension benefits 

could be effectively settled.” The discount rates regularly published by the Pension Benefit Guaranty 

Corporation (PBGC) and used to value the liabilities of terminated pension plans, satisfied this condi-

tion. However, FAS 87 also allows the company “to look to rates of return of high-quality fixed in-

come investments currently available and expected to be available during the period to maturity of the 

pension benefits.” In practice, sponsoring companies often use the average yield to maturity on long-

term corporate bonds with a Moody’s AA rating (Coronado and Sharpe, 2003).2 However, this prac-

tice still leaves some degree of discretion and this can be exercised strategically to manipulate earn-

ings. Bergstresser et al. (2006) offer a post-FAS 87 analysis of pension assumptions and show that the 

                                                 
2 This choice is also consistent with U.K. and international accounting standards FRS 17 and IAS 19, respectively. 
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expected return on plan assets, another assumption required by FAS 87, tends to be used to manipu-

late reported earnings. Similarly, Cocco and Volpin (2007) show that insider trustees in the U.K, who 

are also executive directors of the sponsoring company, tend to act in favor of the shareholders of the 

sponsor rather than in the interests of the pension plan members. 

 We propose a method of liability valuation which will generate heterogeneous, pension-plan-

specific, discount rates as in the pre-FAS 87 period, but in a systematic and standardized way as in the 

post-FAS 87 period. Our method avoids any discretionary freedom with respect to the choice of the 

discount rate and thus effectively prevents manipulations of the form detected by Bergstresser et al. 

(2006) and Cocco and Volpin (2007).  

2.2 Why Consider Funding Risk? 

Feldstein and Seligman (1981) argue that promised future pension benefits are a substitute for current 

wages. Consequently, if the promise is not fully funded, then a company introducing a pension plan in 

exchange for lower current wages will create accounting profits. If the stock market correctly values 

the underfunded pension obligations, the company’s share price will drop by the extent of underfund-

ing. In this case, shareholders will not be fooled by temporary accounting profits and, hence, will 

leave their lifetime consumption plan unchanged. However, if the market incorrectly values under-

funded pension liabilities, shareholders might interpret temporary accounting profits as an increase in 

permanent income and increase consumption accordingly. Contrary to the findings of studies of the 

pre-FAS 87 period by Feldstein and Seligman (1981) and Bulow et al. (1987), recent studies of the 

post-FAS 87 period by Coronado and Sharpe (2003) and Franzoni and Marín (2006) find that the 

market does not correctly value firms with a DB pension plan. Coronado and Sharpe find evidence 

that all companies with a DB plan are overvalued, while Franzoni and Marín show that the market 

only overvalues companies with underfunded DB pension liabilities. Thus, the Feldstein and Selig-

man argument applies and shareholders are at risk of suboptimally cutting savings.  

 A regulator adopting our proposed method of pension liability valuation would help to increase 

shareholder awareness of possible future funding gaps, since the funding spreads that emerge from 

our method reflect both future underfunding probabilities and expected funding ratios conditional on 
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underfunding. Reporting the term structure of funding spreads would increase transparency and help 

shareholders make optimal consumption decisions. 

 Pension plan members are a second group of stakeholders with a clear interest in the FRA value of 

their pension promise, since the future pension payments they expect to receive will also influence 

their lifetime savings and consumption choices. If the term structure of funding spreads indicates con-

siderable funding risk, then the member might decide to compensate through increased private pen-

sion savings at the cost of reduced consumption. Again, transparency would help plan beneficiaries 

make optimal choices. 

 Transparency with respect to future underfunding probabilities will benefit the third key stake-

holder of the pension plan, namely the sponsoring company itself. Rauh (2006) shows that, for com-

panies facing financial constraints, capital expenditures decline by the amount of mandatory contribu-

tions to their DB pension plans. The term structure of funding spreads immediately highlights possible 

future financial constraints arising from the current decisions of the plan sponsor in respect of the 

funding level, the magnitude of contributions, the generosity of benefits and the asset allocation. 

Henceforth, the plan sponsor will not be surprised by the need to make future contributions to the 

plan, nor by the consequential requirement to curtail corporate investment. 

 

3.  Valuation in the Presence of Funding Risk  

3.1  Funding Spreads 

We are interested in obtaining the current time-t value, , of a pension benefit payment, B, at some 

future time 

s
tP

.st +  B is stochastic because it depends on the ability of the plan sponsor to cover its li-

abilities at time .st +  The expected pension benefit payment might therefore be lower than the prom-

ised benefit. We assume that underfunding occurs with probability . In the case of underfunding, 

only a recovery fraction, , of the promised pension benefit, B, will be paid off. Under these as-

sumptions, we can apply the fundamental equation of asset pricing (see Cochrane, 2001) to obtain the 

current value of the future pension payment as  

s
tπ

s
tλ

[ ] [ ] [ ] ( )ststtsttsttststt
s
t Payoff,McovPayoffEMEPayoffMEP ++++++ +==       (1) 
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where              (2) [ ] ( ) ss
tstt Y1ME

−
+ +=

   [ ] ( ) BB1PayoffE s
t

s
t

s
tstt λπ+π−=+ .        (3) 

stM +  denotes the s-period stochastic discount factor (SDF), which equals the inverse of the risk-free 

rate for a maturity of s periods in conditional expectation as shown in (2). We use conditional expec-

tations to allow for time variation in investment opportunities. The expected pension payoff is derived 

in (3) as the probability-weighted sum of the pension payoffs in the states of over- and underfunding.  

 The conditional covariance term in (1) depicts the risk correction (Cochrane, 2001) term. For our 

purposes, we find it more convenient to replace this additive term with a multiplicative term, 

, where  defines the funding-risk premium (FRP). Then we can rewrite (1) as ( ) ss
t1

−
θ+ s

tθ

( )
( ) ( ) ( ) ( )ss

t
ss

t
ss

t
ss

t

s
t

s
t

s
ts

t
1Y1

B

1Y1

BB1
P

∆++
=

θ++

λπ+π−
=          (4) 

where  ( ) ( ) [ ] [ ]( )sttsttststt
ss

t PayoffEMEPayoff,Mcov11 ++++
−

+=θ+      (5) 

( ) ( ) ( s
t

s
t

s
t

ss
t

ss
t 111 λπ+π−θ+=∆+

−− ).        (6) 

The first equality in (4) follows from replacing (2), (3) and (5) in equation (1). For the second equality 

in (4), we use the promised pension benefit in the numerator which then needs to be discounted by a 

FRA discount factor using the funding spread, , defined in (6), over the yield on a risk-free bond 

with maturity s.

s
t∆

3 For varying s, (6) defines a term structure of funding spreads. The funding spread 

increases with a higher FRP. For a given FRP, the funding spread increases with an increasing condi-

tional underfunding probability and decreases with an increasing recovery fraction in the case of un-

derfunding.  

 The term structure of funding spreads is completely described by ,  and . We define  s
tπ

s
tλ

s
tθ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ<=π

+

+
0

st

st
t

s
t L

A
Pr              (7) 

                                                 
3 The reader will notice that our approach of deriving funding spreads resembles the derivation of credit spreads in credit risk 

models. Das and Sundaram (2000) provide a discrete time reduced-form model which leads to credit spreads of the form (6).  
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
τ<

τ
=λ

+

+

+

+
0

st

st
0

st

st
t

s
t L

A
|

L
A

E1 .             (8) 

According to (7), underfunding at horizon s occurs when the funding ratio of assets, , over li-

abilities, , falls below a funding threshold, 

stA +

0
stL + τ .  is the present value of all future pension 

payments promised by the plan sponsor, discounted using zero funding spreads (which explains the 

superscript). While (7) defines the conditional underfunding probability, (8) defines the recovery frac-

tion as the expected funding ratio conditional on underfunding. Because the recovery fraction is 

scaled by a funding threshold, , it is possible to have threshold levels larger than unity (without vio-

lating the inequality ) in the case where a regulatory authority requires the sponsoring company 

to maintain a funding buffer.

0
stL +

τ

1s
t ≤λ

4 It is important to recognize that  and  depend on the future fund-

ing ratio which itself depends on the current asset allocation chosen by the pension plan. Thus, the 

term structure of funding spreads is a function of the chosen asset allocation.

s
tπ

s
tλ

 

 If the pension plan is independent of the sponsoring company and the latter is under no obligation 

to close any funding gap, then  would seem to be a sensible choice. If the regulatory authority 

obliges the sponsoring company to close any funding gap, the funding threshold could be modeled as 

1=τ

0
stst LN1 ++−=τ  such that ( )( )1LNAPr 0

stststt
s
t <+=π +++  where  denotes the future net worth 

of the sponsoring company.

stN +

 5 In this case, underfunding only occurs whenever the sum of the pension 

plan assets and the net worth of the sponsoring company falls below the value of the pension liability. 

3.2 Funding-Risk Premia 

The risk premium for being exposed to funding risk at horizon s is determined by (5). We can sim-

plify this expression if we are willing to reduce the state space to the two possible states of the world 

                                                 
4 In the Netherlands, for example, the pension regulator requires pension plans to be 105% funded at all times (τ = 1.05). 

5 Similarly, Nt+s could be set at the level of liabilities that are covered by a pension guarantee fund such as the Pension Bene-

fit Guaranty Corporation (PBGC) in the U.S. or the Pension Protection Fund (PPF) in the U.K. in case of default by the plan 

sponsor. However, because of large concentration risks and moral hazard affecting the behavior of the covered companies, 

the guarantee fund is itself subject to underfunding and default risk unless the government underwrites any funding gap (see 

McCarthy and Neuberger, 2005).   
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which are relevant for the determination of the pension benefit payoff, namely the states of over- and 

underfunding.6 In this case, [ ] ( ) u
st

s
t

o
st

s
tstt MM1ME +++ π+π−= . Then (1) can be rewritten as  =s

tP

[ ] ( ) BMBM1PayoffME s
t

u
st

s
t

o
st

s
tststt λπ+π−= ++++ . From equating this expression with the first expres-

sion in (4) we obtain  

( ) ( )
( )[ ] [ ] ( )[ ] [ ]stt

u
st

s
t

s
t

s
t

s
t

s
t

stt

o
st

s
t

s
t

s
t

s
tss

t
ME

M

1ME
M

1

1
1

+

+

+

+−

λπ+π−

λπ
+

λπ+π−

π−
=θ+ .                   (9) 

The FRP is now completely determined by ,  and the ratios of the SDFs (in the states of over- 

and underfunding) to the expected SDF. For a given stochastic discount factor, these ratios are much 

easier to determine than the conditional covariance term in the original FRP equation (5).  

s
tπ

s
tλ

3.3  Stochastic Discount Factor 

The stochastic discount factor only affects the FRP (9) which is a part of the funding spread (6). We 

assume that the SDF is the result of negotiation between the stakeholders of the defined benefit 

scheme. Suppose, we assume the stakeholders agreed to use a consumption-based asset model (see 

Cochrane, 2001) which implies SDFs in the states of over- (“o”) and underfunding (“u”) of the form 

( ) γ−
+

γ−

+
+ β=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
β= o

st
s

t

o
stso

st g
C

C
M    and   ( ) γ−

+

γ−

+
+ β=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
β= u

st
s

t

u
stsu

st g
C

C
M                (10) 

where t
o

st
o

st CCg ++ =  and t
u

st
u

st CCg ++ =  denote consumption growth in the states of over- and un-

derfunding (corresponding to states of boom and slump, respectively), β  denotes the subjective time-

discount factor and γ  the coefficient of relative risk aversion for the representative pension plan 

member. We know from (9) that the FRP is positive (i.e., ), if  which is equiva-

lent to . This is likely to be the case when overfunding corresponds to a state of high asset 

values and the representative pension plan member invests in the same asset classes as the pension 

0s
t >θ o

st
u

st MM ++ >

                                                

u
st

o
st gg ++ >

 
6 A less restrictive state space would not generate any additional insights, but would complicate the computation of the fund-

ing-risk premium. In the credit risk literature, the risk premium is often specified in an ad hoc manner. In comparison, our 

specification of the risk premium is much better motivated and leads to an expression which can be readily applied in prac-

tice. 
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plan and increases his consumption when his wealth is high. Given (10), we can determine the re-

maining unknown elements of the FRP, (9), as 

[ ]
( )

( )( ) ( )
( )

1

u
st

o
sts

t
s
tu

st
s
t

o
st

s
t

o
st

stt

o
st

g
g

1
gg1

g
ME

M
−γ

+

+
γ−

+
γ−

+

γ−
+

+

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
π+π−=

π+π−
=     (11) 
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stt
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g

1
gg1

g
ME

M
−γ−

+

+
γ−

+
γ−

+

γ−
+

+

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
π+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
π−=

π+π−
= .7     (12) 

For , (11) will be smaller than unity, while (12) will be larger than unity. The FRP, , is 

known, once we know 

u
st

o
st gg ++ > s

tθ

u
st

o
st gg ++=φ , the ratio of consumption growths in the states of over- and un-

derfunding, respectively. We will assume this ratio is constant, with 1>φ . In the empirical section of 

the paper, φ  will be varied in order to assess the responsiveness of the FRPs. 

  It is useful to derive some comparative statics results from (9) for . First, we can see that  is 

zero, whenever  or . Thus, if one of the two possible states of the world occurs with cer-

tainty, the FRP is zero, whether or not this state is favorable or unfavorable for the pension plan 

member. For conditional underfunding probabilities between the two extreme outcomes, , 

we can show (after some simple but tedious calculations) that the FRP increases with an increasing 

underfunding probability (for fixed s and ) when 

s
tθ

s
tθ

0s
t =π 1s

t =π

10 s
t <π<

s
tλ ( ) ( ) 2s

t
2s

t
s
t 1

−γ− π−πλ>φ . The FRP decreases with 

an increasing underfunding probability when the inequality is reversed. If , 

this corresponds with a point of maximum uncertainty about the future state of the world, so pension 

plan members will demand the highest risk premium here. The FRP decreases with increasing matur-

ity, s, and recovery fraction, , and becomes zero for . All comparative statics results con-

form with a priori expectations. 

( ) ( ) 2s
t

2s
t

s
t 1

−γ− π−πλ=φ

s
tλ 1s

t =λ

 

                                                 
7 We would obtain very similar expressions for alternative stochastic discount factors like the Campbell and Cochrane 

(1999) SDF, which have been shown to work better in empirical work than the SDF of the consumption based model. 
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4.  Illustration    

4.1  Assets and Liabilities 

We consider a stylized DB pension plan which is completely independent of the sponsoring company. 

The latter is under no obligation to close any funding gap. Correspondingly, the funding threshold is 

chosen as . When valuing pension liabilities of the stylized pension plan, we make a number of 

simplifying assumptions. First, we assume that all future promised pension benefit payments, B, are 

constant in nominal terms in order to abstract from inflation risk.

1=τ

8 Second, like Hoevenaars et al. 

(2008), we assume that the plan is sufficiently large that longevity risk is diversified away. Third, also 

in line with these authors, we assume that the maturity of the pension liability is constant (which holds 

for a pension plan in a stationary state where the distribution of age cohorts and accrued benefit rights 

of plan members remains constant over time). Fourth, again like Hoevenaars et al., we assume that 

new contributions to the plan exactly offset any increase in accrued pension rights. The overarching 

purpose of these assumptions is to allow us to focus on the change in liability value arising exclu-

sively from changes in the yield curve. Then, the time st +  value of the pension liability follows as 

∑
=

++ =
M

1m

m
stst PL .           (13) 

where M is the liability horizon which defines the maturity of the pension plan and  is determined 

from (4). From (13) the gross liability return is obtained as 

m
stP +

stt

M

1m

m
st

m
t

M

1m

m
stM

1n

n
t

m
t

M

1m

m
t

M

1m

m
st

t

stL
st RvRvR

P

P

P

P

L
L

R +
=

+
=

+

==

=
+

+
+ ′===== ∑∑

∑∑

∑
       with   

∑
=

= M

1n

n
t

m
tm

t

P

P
v .  (14) 

The return on liabilities is equal to the return on a value-weighted portfolio of zero-coupon bonds. For 

subsequent purposes, we denote the vector of variables ( )st
L

stst R,R,L +++  with a zero superscript, 

( )0
st

0,L
st

0
st R,R,L +++ , when used in connection with zero funding spreads at all maturities. In this case, 

promised and expected pension benefits are always equal. In the presence of funding risk, we will use 

                                                 
8 This is a fairly realistic assumption. In the U.S., for example, companies are obliged to publish pension liabilities which are 

calculated on a nominal basis. Inflation risk has been considered elsewhere (for example, in Hoevenaars et al., 2008). 
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the superscript ∆  in order to indicate positive funding spreads, ( )∆
+

∆
+

∆
+ st

,L
stst R,R,L . We denote  

the risk-free (RF) liability – which is the value of the promised pension found by discounting prom-

ised future pension payments using the term structure of interest rates – and  the FRA liability – 

obtained by discounting the same promised payments using the term structure of FRA discount rates. 

0
stL +

∆
+stL

 Let  denote the value of the pension plan assets at time stA + st + . Then , where 

, is the return of the portfolio which includes a risk-free return, .  de-

notes a vector of returns of risky assets in excess of  and  a vector of corresponding portfolio 

weights. Having defined the assets and liabilities of the pension plan, the funding ratios follow imme-

diately as  and . 

A
sttst RAA ++ =

e
stt Rw′f

st
A

st RR +++ += f
stR +

e
stR +

f
stR + tw

0
stst

0
st L/AF +++ = ∆

++
∆
+ = ststst L/AF

4.2 Asset Allocation   

In line with both Van Binsbergen and Brandt (2007) and Hoevenaars et al. (2008), we assume that the 

pension plan maximizes the conditional time-t expectation of a utility function in the terminal funding 

ratio at horizon k. This is a natural extension of an objective function in the expected utility of final 

wealth – considered, for example, by Campbell and Viceira (2005) – to the case of an institutional 

investor who cares about liabilities. Assuming power utility with a constant coefficient of relative risk 

aversion, γ , and a normal distribution for cumulative log funding ratio returns, , the optimization 

problem is equivalent to the following mean-variance optimization problem (see Campbell and 

Viceira, 2002) 

kts +

[ ] ( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧ γ−+= ++ kttktt

w
t sV1

2
1sEmaxargw

t

.       (15) 

We define the cumulative log funding ratio return as ( )0,L
kt

A
kt

0
kt RRlns +++ =  if based on RF liabilities 

and as ( )∆
++

∆
+ = ,L

kt
A

ktkt RRlns  if based on FRA liabilities.9 We denote the resulting asset allocations as 

                                                 
9 These log returns are derived in appendix A. The appendix also derives the conditional probability of underfunding (7) and 

the recovery fraction (8) in terms of log returns. It turns out that both expressions only depend on the ratio of the initial fund-

ing ratio, F0, to the funding threshold, τ, not the absolute value of the two parameters.  
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0
tw  and . The former allocation is due to Hoevenaars et al. (2008), while the latter allocation is 

our adaptation to the case where funding risk is present.

∆
tw

10 Although the two asset allocation problems 

appear similar at first sight, it should by now be clear that solving for  is much more demanding 

than solving for  because of the presence of endogenous funding spreads which depend on the 

chosen asset allocation. Therefore  has to be obtained by numerical methods while  is avail-

able in closed from (Hoevenaars et al., 2008).  is a weighted average of two components, one re-

lated to speculative asset demand and the other to liability-hedging demand. We will use  as a 

benchmark for comparing the results obtained from  in the empirical part of the paper.  

∆
tw

0
tw

∆
tw 0

tw

0
tw

0
tw

∆
tw

4.3  Return Dynamics 

We follow Campbell et al. (2003), Campbell and Viceira (2005), Van Binsbergen and Brandt (2007) 

and Hoevenaars et al. (2008) and model the return dynamics by means of a vector autoregression with 

one lag, VAR(1). From equations (14) and (15) it is clear that we need k-period ahead forecasts of log 

asset returns and up to ( )mk + -period ahead forecasts of the log returns on a default-free zero-coupon 

bond with maturity m, for . Since M will be small in our application (we use the CRSP 

Fama-Bliss zero-coupon data where the maximum maturity equals five years), we will not specify an 

arbitrage-free term structure model that generates yields with long maturities. At their simplest, the 

liabilities of a pension plan could consist of a single discounted pension payment at maturity m. Add-

ing payments with additional maturities to the liability structure of the pension plan will make little 

difference to the resulting asset allocation unless asset and liability log return correlations vary sub-

stantially with maturity. For this reason we can omit a model for the term structure of interest rates 

from the current analysis.   

M,,1m K=

                                                 
10 Since the conditional underfunding probability, πs

t, and the recovery fraction, λs
t, in the case of underfunding are closely 

related to the risk measures Value at Risk (VaR) and Expected Shortfall (ES), we can justify Campbell and Viceira’s (2005) 

assumption of a buy-and-hold investment strategy for our approach: both VaR and ES are usually computed under the as-

sumption that the chosen asset allocation will be maintained over the forecast period, as emphasized by Cuoco et al. (2005). 
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 Like Campbell and Viceira (2005), we assume that the risk premium on quarterly stock returns is 

driven by the dividend-price ratio, . But unlike these authors, we do not include the spread between 

the yield on a 5-year zero-coupon bond and the nominal short-term interest rate. This is because we 

are already using log returns on zero-coupon bonds with maturities up to M years in our regression for 

the liability return vector, . We do, however, use the log return on T-bills, , and stock and bond 

excess log returns, . The next subsection discusses the data in more detail.  

tq

0
1tr +

f
1tr +

e
1tr +

 Collecting all required data in the vector [ ]0
1t1t

e
1t

f
1t1t r,q,r,rz +++++ ′′=′ for quarters t = , we 

specify a homoskedastic VAR(1) model 

1Q,,1 −K

1tt101t zz ++ ε+Φ+Φ=  with ( Σ)ε + ,0N~1t . Stability (and 

thus stationarity) of the VAR(1) system requires that the maximum eigenvalue of  is smaller than 

unity. Campbell and Viceira (2004) derive the conditional first and second moments of cumulative k-

period log returns (and state variables) implied by the VAR(1) model which are  
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Note that these conditional moments are investment horizon (k) dependent. In order to generate repre-

sentative asset allocations for our sample, we will evaluate (16) at the average value of the state vari-

ables in Section 5. Using (16) and (17) we can generate all required moments. 

 

5.  Empirical Analysis 

5.1 Data and Estimated Return Dynamics 

We consider a simple pension plan which faces pension payments in 1, 2, 3, 4 and 5 years’ time; thus, 

 years in our model. The choice of M is dictated by the availability of zero-coupon bond price 5M =
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data which we obtained from the CRSP Fama and Bliss files for the period 1952:Q2 –2005:Q4.11 We 

use the same time period for our other quarterly data.  

 In line with Campbell and Viceira (2005), we assume the pension plan only considers investing in 

the principal asset classes of cash, bonds and stocks. We use the same quarterly data on interest rates, 

bond and stock returns as Goyal and Welch (2007). Thus, we compute continuously compounded 

quarterly returns of the S&P500 index including dividends. The dividend-price ratio is based on 12-

month moving sums of dividends paid on the S&P500 index. Bond returns refer to long-term gov-

ernment bonds. Stock and bond excess returns are with respect to nominal T-bill returns. We use the 

nominal T-bill rate because the pension plan promises pension payments is assumed to be in nominal 

terms.   

 Mean yields of zero-coupon bonds increase from 5.56% for a one-year maturity to 6.14% for a 

five-year. maturity. Short-term yields are slightly more volatile than long-term yields. Based on these 

yields, we compute prices  for every period t and maturity m and constant-maturity 

returns 

( ) mm
t

m
t Y1P

−
+=

m
t

m
kt

m,0
kt PPR ++ = . The mean of constant-maturity zero-coupon returns is approximately zero at 

all maturities. The volatility increases from 1.75% for the shortest maturity to 6.24% for the longest 

maturity. Due to the constant-maturity assumption, the value of the pension plan liability hardly 

changes in expectation over time, but will, given these bond return volatilities, be subject to consider-

able interest rate risk.12  

 The VAR(1) model for the asset and liability return dynamics is estimated by OLS.13 The maxi-

mum eigenvalue of the matrix  is 0.9805. Thus, the system is both stable and stationary. The esti-

mates are in line with earlier results obtained by Campbell at al. (2003), Campbell and Viceira (2005) 

and Hoevenaars et al. (2008). We confirm previous findings of these authors regarding the impact of 

the log dividend-price ratio on stock excess log returns. High dividend-price ratios are negatively cor-

1Φ

                                                 
11 Note also, that we can still generate term structures of funding spreads from (15) for horizons beyond M = 5. 

12 Table B1 in appendix B shows annualized descriptive statistics for the data. 

13 Table B2 in appendix B shows the estimation results for the VAR(1) parameter matrix [Φ0, Φ1]. Table B3 in the same 

appendix presents the standard deviations and correlations implied by the moment estimator of Σ in (17). 
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related with contemporaneous stock excess returns, but significantly predict positive future stock ex-

cess returns. As a result, the dividend-price ratio causes mean reversion in stock excess returns.  

5.2 The Term Structure of Funding Spreads 

As we saw above, our proposed method of optimizing an objective function in the log return on the 

funding ratio of assets to FRA liabilities automatically generates a term structure of funding spreads 

(6) evaluated at the optimal asset allocation, . We can also manually calculate the funding spreads 

at the asset allocation outcome, , from optimizing an objective function in the terminal log return 

on the funding ratio of assets to RF liabilities. By comparing the difference between the resulting term 

structures of funding spreads, , and its components,  and , we can assess the funding risks 

implied by the two optimal portfolios. We will try this for different combinations of the parameters 

involved in the two objective functions: k, the investment horizon, 

∆
tw

0
tw

s
t∆

s
tπ

s
tλ

φ , the relative consumption 

growth, γ , the coefficient of relative risk aversion, and , the initial funding ratio. Recall that only 

the ratio of the initial funding ratio  to the funding threshold 

0
tF

0
tF τ  is relevant for determining the un-

derfunding probabilities and recovery fractions, not the absolute value of the two parameters. For this 

reason, we decided to set  and vary . 1=τ 0
tF

 Table 1 shows funding spreads, FRPs, underfunding probabilities and recovery fractions for a 

fixed maturity of one year (four quarters) for different values of k, φ , γ  and . What is clear is that, 

for the parameter constellations under consideration, the funding spreads resulting from using the as-

set allocation  are smaller than the funding spreads derived from . The pension plan which 

determines the optimal asset allocation using FRA liabilities (i.e., )  will be less prone to under-

funding and usually achieves higher recovery fractions than the plan using RF liabilities in (15). 

0
tF

∆
tw 0

tw

∆
tw

 The first panel of Table 1 shows the impact of varying the initial funding ratio on the funding 

spread for a given investment horizon of 5k =  years, relative consumption growth , and 

relative risk aversion 

04.1=φ

5=γ .  takes values ranging between 0.75, which corresponds to a situation 

of severe underfunding relative to the threshold 

0
tF

1=τ , and 1.0, which corresponds to a situation of full 
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funding. It is not surprising that the funding spread decreases with increasing initial funding from 

 when  to  when . The appropriate funding spread for a pen-

sion plan with 100% initial funding reflects an underfunding probability of  and a recov-

ery fraction of . To assess the magnitude of these funding spreads, we compute the 

spreads between the yields on long-term corporate bonds with maturities of 20 years and above and 

the yield on a Treasury bond with a constant maturity of 10 years.

208.04
t =∆ 75.0F0

t = 012.04
t =∆ 0.1F0

t =

1855.04
t =π

9446.04
t =λ

14 Depending on the credit rating of 

the issuing companies, we obtain the following average spreads from annual data between 1980 and 

2006: 0.0105 (AAA), 0.0137 (AA), 0.0167 (A) and 0.0214 (BAA). Thus, the one-year spread for a 

100%-funded pension plan approximately corresponds to the long-term average yield spread on 

AAA-rated corporate bonds. A 90%-funded pension plan would need a funding spread that is more 

than twice the average yield spread on BAA-rated bonds to appropriately reflect the risk underlying 

the promised pension payment at the one-year horizon.  

 The second panel of Table 1 shows the effect of varying the relative risk aversion on the funding 

spread for a given investment horizon of 5k =  years, relative consumption growth , and ini-

tial funding ratio . As might be anticipated, higher relative risk aversion parameters imply 

lower funding spreads, mostly because underfunding probabilities are reduced as a result of the adop-

tion of a more conservative asset allocation. A pension plan whose trustees have relative risk aversion 

04.1=φ

0.1F0
t =

2=γ  should use a one-year funding spread of 0.041, which decreases to 0.012 for 5=γ  and to 0.005 

for 10=γ . 

 The third panel of Table 1 shows the impact of a variation in relative consumption growth, φ , in 

the state of overfunding to the state of underfunding for given investment horizon of  years, 

relative risk aversion 

5k =

5=γ  and initial funding ratio . Recall that 0.1F0
t = φ  is the unknown parame-

ter of the stochastic discount factor. Hence, a variation of φ  directly affects the one-year FRP, . 4
tθ

                                                 
14 The corporate bond yields are derived from Moody’s long-term corporate bond yield index available from Moody’s web-

site. Yields on Treasury bonds with a constant maturity of 10 years are available from the Federal Reserve statistical release 

(http://federalreserve.gov/releases/h15/data.htm). 
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Increasing the relative consumption growth from 02.1=φ  (which is consistent with 4% consumption 

growth in the state of overfunding and 2% consumption growth in the state of underfunding) to 

 (which is consistent with 8% consumption growth in the state of overfunding and 2% con-

sumption growth in the state of underfunding) increases the FRP from  to . The 

increase in the FRP leads to an increase in the funding spread by a corresponding amount. While the 

recovery fraction, , remains unchanged, the underfunding probability decreases from  

when  to  when . This is a consequence of a small change in the 

optimal asset allocation caused by the variation of .  

06.1=φ

001.04
t =θ 003.04

t =θ

4
tλ 185.04

t =π

001.04
t =θ 183.04

t =π 003.04
t =θ

4
tθ

 Finally, the fourth panel of Table 1 contains results from varying the investment horizon, k, for 

given relative consumption growth 04.1=φ , relative risk aversion 5=γ  and initial funding ratio 

. We observe that a pension plan with a longer investment horizon should discount one-year 

liabilities using larger funding spreads of 0.019 for k = 10 years, compared with 0.016 for k = 7.5 

years and 0.012 for k = 5 years. This is because one-year underfunding probabilities increase and one-

year recovery fractions decrease with an increasing investment horizon. The explanation for this is 

that the long-term investor attempts to exploit mean reversion in stock returns with a large holding in 

stocks, which favorably impacts the long-term Sharpe ratio for stocks, but has little effect at the one-

year horizon. Thus, at the one-year horizon, the asset allocation of a long-term investor is actually 

quite risky and this is reflected in the higher funding spread.  

0.1F0
t =

 Figures 1 and 2 present the term structure of funding spreads (6) for maturities of up to 10 years 

for a pension plan with an investment horizon corresponding to the liability horizon  and rela-

tive risk aversion of 

5k =

5=γ . In Figure 1, we consider an initial funding ratio of , while in Fig-

ure 2, the initial funding ratio is reduced to . The upper graph in each figure shows the fund-

ing spread and FRP curves, while the lower graph displays the corresponding underfunding probabili-

ties and recovery fractions. We present the spreads automatically generated from computing  and 

the spreads manually calculated from . Although both funding spreads are close to each other, the 

0.1F0
t =

75.0F0
t =

∆
tw

0
tw
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spread generated from the portfolio  always exceeds the spread related to . Note that the fig-

ures show annualized spreads obtained by dividing the quarter s in equation (6) by four. FRPs are also 

annualized.  

0
tw ∆

tw

 Figure 1 shows that funding spreads decline rapidly towards zero with increasing maturity. This is 

because the liabilities in our (somewhat artificial) example do not grow systematically over time and 

are only affected by interest rate risk, while the assets have positive expected returns. Thus, the prob-

ability of underfunding decreases with maturity. This can be seen clearly from the lower graph in Fig-

ure 1. Recovery fractions decrease with maturities below about 2.5 years and increase for higher ma-

turities. The initial decrease is due to the volatility of the funding ratio return, while the subsequent 

increase is due to the effect of positive expected asset returns on raising the expected funding ratio 

and hence . s
tλ

 The funding spreads for the seriously underfunded pension plan in Figure 2 start at a much higher 

level than those for the fully funded pension plan in Figure 1, but decline even faster to zero with in-

creasing maturity. This is because of underfunding probabilities, which are very close to unity for the 

early quarters (recall  and ), but subsequently decline rapidly to about zero at a horizon 

of 40 quarters as the expected funding ratios increase. The term structure of recovery fractions is up-

ward sloping which can again be explained by the increase in expected funding ratios. The maximum 

recovery fraction in Figure 2 is only slightly higher than the minimum recovery fraction in Figure 1 

reflecting the 30% difference in initial funding.  

75.0F0
t = 1=τ

 The FRP, , declines with maturity and increasing recovery fractions in Figure 1 (for ) 

from about 0.006 at the one-quarter horizon to zero at the four-year horizon. For all maturities, the 

risk premia in our example are too small to have a sizable impact on funding-risk spreads. From Fig-

ure 2 (for ), we see that the FRP first increases from zero to about 0.003 at the two-year ho-

rizon and then decreases again to zero at the seven-year horizon. This pattern can be explained using 

our comparative statics results for the FRP in Section 3.3. Recall that the FRP decreases with increas-

ing maturity and an increasing recovery fraction and increases with a decreasing underfunding prob-

s
tθ 0.1F0

t =

75.0F0
t =
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ability whenever  . For maturities below two years, the latter effect dominates 

the effects of an increasing maturity and an increasing recovery fraction on the risk premium.  

<φ γ− ( ) ( ) 2s
t

2s
t

s
t 1

−
π−πλ

 The existence of a term structure of funding spreads as shown in Figures 1 and 2 brings into ques-

tion the current practice in the U.S. of using maturity-invariant discount rates for liability valuation 

purposes (often the yield on AA-rated long-term corporate bonds). A constant discount rate only can 

be justified in the unlikely case where the slope of the term structure of interest rates exactly offsets 

the slope of the term structure of funding spreads.  

5.3 Optimal Asset Allocation 

We compute the optimal asset allocations  and  for a wide range of initial funding ratios be-

tween  and  for fixed 

0
tw ∆

tw

025.0F0
t = 625.1F0

t = 1=τ  and 04.1=φ  and a baseline parameter specification 

with investment horizon  and relative risk aversion 5k = 5=γ . In addition, we provide two com-

parative statics results for an increase in the relative risk aversion, to 10=γ , and in the investment 

horizon, to , leaving all other parameters unchanged. Figure 3 displays the optimized outcomes 

for the baseline specification. Specifically, the upper graphs in the figure contain plots of the optimal 

allocation to stocks and the one-year funding spread over the range of initial funding ratios, while the 

lower graphs contain plots of the one-year underfunding probability and the one-year recovery frac-

tion over the range of initial funding ratios. We present results for both  and . 

10k =

0
tw ∆

tw

 The optimal allocation to stocks in portfolio  is independent of the initial funding ratio as pre-

dicted by Hoevenaars et al. (2008). In the upper graph in Figure 3, this allocation is represented by the 

horizontal line at a level of 73% stocks. By contrast, the optimal allocation to stocks in portfolio  

depends on the initial funding ratio, since this affects both the underfunding probability (7) and the 

recovery fraction (8). From Figure 3, we see that the optimal allocation to stocks in portfolio  is a 

highly non-linear function of the initial funding ratio. We first describe the function and then provide 

an explanation for it.  

0
tw

∆
tw

∆
tw
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 The  function has four segments which correspond to four states of the initial funding ratio. 

State 1, which we define as a state of “critical underfunding”, holds for initial funding ratios below 

40% ( ). In this segment, the allocation to stocks is both relatively low (around 25%) and in-

variant to the size of the initial funding ratio below the critical threshold. State 2, which we define as a 

state of “severe underfunding”, holds for initial funding ratios between 40% and 75% 

( ). The moment the initial funding ratio rises above 40% initial funding, the alloca-

tion to stocks jumps to a level of about 90%, which is above the optimal allocation to stocks in portfo-

lio  (around 73%). In this segment, the optimal allocation to stocks in portfolio  is a concave 

function of the initial funding ratio, always lying above the corresponding allocation in , reaching 

a peak of 97% at an initial funding ratio of 50%, before falling back to 73% when the initial funding 

ratio reaches 75%. State 3, which we define as a state of “moderate underfunding“, holds for initial 

funding ratios between 75% and 100% ( ). In this segment,  is a convex function of 

the initial funding ratio and always lies below . The allocation to stocks reaches a local minimum 

in this state of approximately 67% at an initial funding ratio of 90%. State 4 is a state of ”overfund-

ing” ( ). The optimal allocation to stocks in portfolio  is an increasing function of the initial 

funding ratio and rapidly approaches the optimal allocation to stocks in portfolio . For initial fund-

ing ratios larger than 120%, the two allocations coincide exactly.  

∆
tw
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t ≤<
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 What determines this functional form for the optimal allocation to stocks in portfolio ? The 

lower graph in Figure 3 helps explain the optimal asset allocation in state 1 (critical underfunding). 

We see that the one-year underfunding probability equals unity below an initial funding threshold of 

65%. Below 40%, all underfunding probabilities equal unity for horizons up to and including the ma-

turity of the pension liability. In this state, the initial funding ratio is so low that the asset allocation 

cannot influence underfunding probabilities for nearby horizons. Thus, the asset allocation remains 

invariant to changes in the initial funding ratio. The funding spreads, reflecting the unit underfunding 

probabilities, are extremely high for short maturities. Figure 2 shows that the one-quarter funding 

∆
tw
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spread for an initial funding ratio of 75% almost equals 2: for funding ratios below 40%, the spread is 

considerably higher. As a consequence, the FRA liability value at the investment horizon decreases 

and the expected log funding ratio return increases. For the given relative risk aversion, the pension 

plan compensates this increase by choosing an asset allocation with a relatively low stock exposure. 

 The lower graph in Figure 3 also helps explain the asset allocation in state 4 (overfunding). Since 

funding spreads rapidly approach zero for initial funding ratios in excess of 100%, the stock allocation 

in portfolio  converges to that in portfolio . This is because the underlying objective functions 

only differ by the presence of funding spreads. 

∆
tw 0

tw

 The asset allocations associated with states 1 and 4 could be readily predicted. More interesting, 

because they are less predictable, are the asset allocations associated with states 2 and 3. In state 2 

(severe underfunding), the initial funding ratio is sufficiently large that a change in the asset allocation 

has an impact on underfunding probabilities for longer horizons. In this state, the pension plan bets on 

the equity premium in order to increase the expected funding ratio at the investment horizon. This 

results in a higher stock weighting for  compared with . If a pension plan finds itself in state 3 

(moderate underfunding), it wants to reduce the risk of making the deficit even worse. It therefore 

takes a more cautious approach than it would in state 2 and chooses a lower stock weighting than it 

would in that state, one which is even lower than the stock weighting in . 

∆
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 Either increasing the coefficient of relative risk aversion or increasing the investment horizon 

changes the optimal asset allocation, but does not alter the general pattern outlined above.15 In line 

with earlier findings by Campbell et al. (2003), Campbell and Viceira (2005), and Hoevenaars et al. 

(2008), higher risk aversion implies lower stock holdings, while a longer investment horizon leads to 

higher stock exposure as a consequence of mean reversion in stock returns.  

 However, funding spreads, underfunding probabilities and recovery fractions are not very sensitive 

to the size of the coefficient of relative risk aversion or the length of the investment horizon. One-year 

                                                 
15 Figures C1 and C2 in appendix C show the comparative statics results from increasing γ = 5 to γ = 10 and from increasing 

k = 5 to k = 10, respectively. The four states identified in Figure 3 are clearly discernible in these figures too, although the 

corresponding initial funding ratio boundaries differ slightly. 
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funding spreads decrease from a level in excess of 3.5 at  to below 0.1 at an initial funding 

ratio of around 80%. A closer look at the data reveals that the funding spreads for  slightly exceed 

those for  in state 1. Since one-year underfunding probabilities for  and  in this state both 

equal zero, the difference in funding spreads is explained by one-year recovery fractions which are 

slightly higher for  than for  However, in states 2 to 4, a pension plan using the proposed asset 

allocation ∆
tw ll always exhibit a smaller funding spread than a pension plan using 0

tw

2.0F0
t =

∆
tw

0
tw 0

tw ∆
tw

0
tw ∆

tw .

 wi .   

 Table 2 sheds a more quantitative light on the asset allocation “wave” in states 2 to 4 than can be 

gleaned from Figure 3 alone.16 Table 2 shows the optimal allocations to cash, bonds, and stocks in 

portfolios  and . We present results from the optimization exercise for fixed  and 

 and for a range of initial funding ratios, 

0
tw ∆

tw 1=τ

04.1=φ ( )10.1,00.1,90.0,75.0F0
t ∈ , falling within states 2 to 

4 for our baseline parameter specification, 5k =  and 5=γ , together with comparative statics results 

for  and . We can see from Table 2 that a 100% funded pension plan, which adopts the 

optimal portfolio for FRA liabilities, , would allocate 69.1% of its assets to stocks in our baseline 

parameter specification. A pension plan selecting portfolio , which is optimal for RF liabilities, 

would allocate 73.4% to stocks. From Table 1, we know that this stock exposure translates into a one-

year funding spread of 0.012 for  and 0.014 for , because the underfunding probability is 

smaller and the recovery fraction is larger for . The 4.3 percentage point difference between the 

two stock allocations is distributed to cash (2.6) and bonds (1.7) in portfolio .  

10=γ 10k =

∆
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 Increasing the coefficient of relative risk aversion to 10=γ  decreases the optimal stock allocations 

to 40.6% in portfolio  and to 41.7% in portfolio . On the other hand, increasing the investment 

horizon to twice the maturity of the liabilities, 

∆
tw 0

tw

10k = , increases stock allocations to 89.1% ( ) and 

93.0% ( ), respectively.   

∆
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16 Or Figures C1 and C2 in appendix C.  
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6. Conclusion  

In this paper, we critically review the current practice of pension liability valuation using discount 

rates which do not reflect the risk inherent in the pension promise. We propose a new approach to the 

valuation of pension obligations which depends on the term structure of funding-risk-adjusted dis-

count rates that, in turn, depend on the asset allocation of the pension fund. When the asset allocation 

is based on an objective function in assets and funding-risk-adjusted liabilities, discount rates and 

portfolio weights are interdependent and can be determined in a single optimization step. We demon-

strate this for a pension plan which optimizes the expected utility in a terminal funding ratio (of assets 

to funding-risk-adjusted liabilities) at a finite horizon. Since our approach does not require the pension 

plan to make any assumptions about the chosen discount rate for liability valuation purposes, we ef-

fectively remove an important degree of freedom from the plan sponsor’s set of choices on how to 

measure liabilities and, hence, reduce the likelihood of the liabilities being reported in a strategic way 

to satisfy goals that might conflict with the proper objective of managing the plan in the best interests 

of the plan’s beneficiaries. On the contrary, we believe that our proposed valuation method has advan-

tages for all stakeholders of the pension plan, including the sponsoring company and its shareholders, 

and this is because it increases transparency with respect to the plan’s expected future funding posi-

tion.  

 On the basis of applying our model to U.S. data, we can conclude that a pension plan with an ini-

tial funding ratio that is not critically low and which maximizes our proposed objective function will 

always exhibit lower underfunding probabilities, higher recovery fractions, and lower funding spreads 

than a pension plan which maximizes a conventional objective function in the log return of assets over 

risk-free liabilities. The funding spreads also vary with maturity, which brings into question the cur-

rent practice of using constant discount rates. The optimal asset allocation varies with the initial fund-

ing ratio of the pension plan. A plan which follows our methodology will always allocate a smaller 

weighting of plan assets to stocks than is conventional, except when the initial funding ratio is severe 

(a state of underfunding which lies between critical and moderate). A severely underfunded pension 

plan tries to benefit from the equity premium, while a moderately underfunded pension plan takes a 
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more cautious approach and tries to avoid a further reduction in the funding ratio by choosing a lower 

stock exposure. A critically underfunded plan faces such high funding risk that the optimal allocation 

to stocks (which is less than half the conventional level in our example) is independent of the funding 

ratio.  

 Finally, we note that our methodology is very easy to implement and converges very quickly. We 

would therefore expect pension plan stakeholders and pension regulators to show interest in the fund-

ing-risk-adjusted measure of the pension liabilities of private companies in due course. 
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Tables and Figures 

 

Table 1: One-year funding spreads, funding-risk premia, underfunding probabilities and recovery 

fractions 

    4
t∆  4

tθ  4
tπ  4

tλ  

k  φ  γ  0
tF  0

tw  ∆
tw 0

tw ∆
tw 0

tw ∆
tw  0

tw  ∆
tw

5 1.04 5 0.75 0.208 0.208 0.002 0.002 0.956 0.956 0.822 0.822 

   0.90 0.053 0.050 0.004 0.004 0.530 0.545 0.914 0.920 

   1.00 0.014 0.012 0.002 0.002 0.194 0.184 0.941 0.945 

5 1.04 2 1.00 0.047 0.041 0.003 0.002 0.302 0.291 0.859 0.871 

  5  0.014 0.012 0.002 0.002 0.194 0.184 0.941 0.945 

  10  0.005 0.005 0.001 0.001 0.111 0.107 0.969 0.970 

5 1.02 5 1.00 0.013 0.011 0.001 0.001 0.194 0.185 0.941 0.945 

 1.04   0.014 0.012 0.002 0.002 0.194 0.184 0.941 0.945 

 1.06   0.015 0.013 0.003 0.003 0.194 0.183 0.941 0.945 

5 1.04 5 1.00 0.014 0.012 0.002 0.002 0.194 0.184 0.941 0.945 

7.5    0.017 0.016 0.002 0.002 0.212 0.205 0.932 0.936 

10    0.020 0.019 0.003 0.003 0.226 0.220 0.924 0.928 

Note: k is the investment horizon in years, φ  relative consumption growth,  the coefficient of rela-

tive risk aversion and  the initial funding ratio (assuming 

γ

0
tF 1=τ ).  denotes the one-year (four-

quarter) funding spread,  the one-year funding-risk premium,  the one-year underfunding prob-

ability and  the one-year recovery fraction. These are valued at  and , the optimal portfolios 

for RF and FRA liabilities, respectively.  

4
t∆

4
tθ

4
tπ

4
tλ

0
tw ∆

tw
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Table 2: Optimal asset allocation 

   Cash Bonds Stocks 

k  γ  0
tF  0

tw  ∆
tw  0

tw  ∆
tw  0

tw  ∆
tw  

5 5 0.75 -0.024 -0.045 0.290 0.307 0.734 0.738 

  0.90 -0.024 0.013 0.290 0.317 0.734 0.669 

  1.00 -0.024 0.002 0.290 0.307 0.734 0.691 

  1.10 -0.024 -0.013 0.290 0.297 0.734 0.717 

5 10 0.75 0.235 0.203 0.348 0.352 0.417 0.445 

  0.90 0.235 0.247 0.348 0.359 0.417 0.394 

  1.00 0.235 0.241 0.348 0.353 0.417 0.406 

  1.10 0.235 0.235 0.348 0.348 0.417 0.416 

10 5 0.75 -0.145 -0.139 0.215 0.240 0.930 0.899 

  0.90 -0.145 -0.120 0.215 0.245 0.930 0.875 

  1.00 -0.145 -0.126 0.215 0.235 0.930 0.891 

  1.10 -0.145 -0.134 0.215 0.226 0.930 0.908 

Note: k is the investment horizon in years,  the coefficient of relative risk aversion and  the initial 

funding ratio (assuming 

γ 0
tF

1=τ ). Cash, bonds and stocks refer to the allocations to these asset classes. 

These are valued at  and , the optimal portfolios for RF and FRA liabilities, respectively. The 

parameter of relative consumption growth is set to 

0
tw ∆

tw

04.1=φ . 
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Figure 1: Term structure of funding spreads, funding-risk premia, underfunding probabilities, and  

recovery fractions for 5k =  years, , 04.1=φ 5=γ , 1=τ ,  0.1F0
t =

0.000
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Note: The graphs show annualized funding spreads, annualized funding-risk premia, underfunding 

probabilities, and recovery fractions over 40 quarters. These are valued at  and , the optimal 

portfolios for RF and FRA liabilities, respectively.  
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Figure 2: Term structure of funding spreads, funding-risk premia, underfunding probabilities, and re-

covery fractions for  years, , 5k = 04.1=φ 5=γ , 1=τ ,  75.0F0
t =
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Note: As per Figure 1. 
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Figure 3: Stock allocations, funding spreads, underfunding probabilities and recovery fractions as a 

function of the initial funding ratio for 5k =  years, 04.1=φ , 5=γ , 1=τ  
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Note: The graphs show the optimal stock allocations and annualized funding spreads (up to a ceiling 

of 4.0), underfunding probabilities and recovery fractions at 1-year maturity.  and  are the op-

timal portfolios for RF and FRA liabilities, respectively. 
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Appendix A: Derivations 

This appendix derives the cumulative log funding ratio returns ( )0,L
kt

A
kt

0
kt RRlns +++ =  and 

( )∆
++

∆
+ = ,L

kt
A

ktkt RRlns . Using the now familiar approximation of the log portfolio return introduced by 

Campbell and Viceira (2002), the log of the cumulative portfolio return, , can be written asA
ktR +

17   

[ ]( ) [ ] t
e

kttt
e

kttt
e

ktt
f

kt
A

kt
A

kt wrVw5.0rVdiagw5.0rwrRlnr ++++++ ′−′+′+==                (A1) 

with  and . Lower-case letters denote variables in logs (unless 

defined otherwise) and  is the conditional variance-covariance matrix operator at time t, with 

 as a vector of the main diagonal elements o

f
kt

f
kt Rlnr ++ = f

ktkt
e

kt RlnRlnr +++ −=

[ ]⋅tV

[ ]( ⋅tVdiag ) f [ ]⋅t . Using the risk-free rate, we can re-

write the cumulative liability return  ks

V

 for =  in (14) as ( )f
ktR +  in 

order to apply again a log-linearization 

ktt
f

ktktt
L

kt RvRRvR ++++ −′+=′=

with ktkt Rlnr ++ =  

[ ]( ) [ ] t
f

ktkttt
f

ktktttktt
L

kt
L

kt vrrVv5.0rrVdiagv5.0rvRlnr +++++++ −′−−′+′== .                (A2)  

We denote the log liability return as  if based on RF liabilities and as  if based on FRA li-

abilities.

0,L
ktr +

∆
+
,L
ktr

18 The log funding ratio returns follow immediately from (A1) and (A2). 

 Under the assumption that the log funding ratio return is normally distributed, we can express the 

conditional underfunding probability, , in (7) and the recovery fraction, , in (8) using moments 

of . The log funding ratio at time 

s
tπ

s
tλ

0
sts + st +  using RF liabilities is distributed as  
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0
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where ( )0
t

0
t Flnf =  is the log of the initial funding ratio. From (A3), we obtain  

                                                 
17 The approximation is based on a second-order Taylor series expansion and is needed because the log portfolio return is not 

equal to the portfolio-weighted average of log returns.   

18 We ignore in the Taylor series expansion for the latter the fact that vt depends on r∆t+k-rf
t+k as well. This is justified by the 

fact that since the elements of vt  sum up to unity, the impact of this simplification is negligible.  
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for (7) and (8) where ( )⋅Φ  denotes the c.d.f. of the standard normal distribution. Equation (A5) ex-

ploits properties of the truncated lognormal distribution (see Lien, 1985). It is evident from (A4) and 

(A5) that only the ratio of the initial funding ratio, , to the underfunding threshold, τ , is relevant 

for determining the underfunding probabilities and recovery fractions, not their absolute value. Thus, 

for given moments of the log funding ratio return , the parameter constellation  and 

 will give the same values for  and  as the constellation  and .  

0
tF

0
sts + 1F0

t =

8.0=τ s
tπ

s
tλ 25.1F0

t = 0.1=τ

 If the regulatory authority obliges the sponsoring company to close any funding gap, the funding 

threshold could be modeled as 0
stst LN1 ++−=τ  such that ( )( )1LNAPr 0

stststt
s
t <+=π +++  and  =λs

t

( ) ( )[ ]1LNA|LNAE 0
ststst

0
stststt <++ ++++++  where  denotes the future net worth of the spon-

soring company. To derive expressions like (A4) and (A5) for this case, assume that the net worth of 

the plan sponsor in period 

stN +

st +  can be written as . Define the sum of assets of the 

pension plan and the net worth of the sponsoring company as 

N
sttst RNN ++ =

ttt NAV +=  (total assets) and the 

funding ratio in terms of total assets as ( ) 0
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0
t LNAG += . Let  ( )tttt NAAa +=  denote the frac-

tion of the plan assets in total assets, . Then the cumulative s-period return on total assets results as tV
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Using again the Campbell and Viceira (2002) approximation of the log portfolio return, we obtain 

( ) ( ) [ ]N
st

A
stttt

N
st

A
stt

N
st

V
st rrVa1a5.0rrarr ++++++ −−+−+= . Assuming that the difference between the log 

return on total assets and the log return on the RF liabilities, , is normally distributed 

and denoting the log initial funding ratio as , we find  
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From here we obtain the expressions of interest similar to equations (A4) and (A5) 
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Appendix B: Tables 

Table B1: Descriptive statistics 

 Mean St.dev.

Nominal T-bill return 5.21 1.41

Bond excess return 1.53 9.78

Stock excess return 7.05 15.74

Dividend-price ratio -3.47 0.40

1-yr zero-coupon bond yield 5.56 2.92

2-yr zero-coupon bond yield 5.76 2.88

3-yr zero-coupon bond yield 5.93 2.81

4-yr zero-coupon bond yield 6.06 2.78

5-yr zero-coupon bond yield 6.14 2.74

1-yr zero-coupon bond return -0.03 1.75

2-yr zero-coupon bond return -0.04 3.15

3-yr zero-coupon bond return -0.04 4.29

4-yr zero-coupon bond return -0.03 5.32

5-yr zero-coupon bond return -0.01 6.24

Note: With the exception of the dividend-price ratio, all statistics are annualized percentages. Mean 

log returns are adjusted by half of their variance to reflect mean gross returns. Quarterly data from 

1952:Q2 –2005:Q4. 
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Table B2: VAR(1) estimation results 

Const. (1) (2) (3) (4) (5) (6) (7) (8) (9) R2

(1) Nominal T-bill return 0.00 0.97 0.01 0.00 0.00 -0.13 0.03 0.05 -0.05 -0.01 0.94 

    

  

    

  

    

  

    

  

  

0.65 54.40 1.33 2.23 0.38 -2.25 0.59 1.16 -1.77 -0.30 0.00

(2) Bond excess return -0.01 0.02 -0.02 -0.06 -0.01 -1.58 0.20 -1.89 2.79 -0.84 0.09

-0.42 0.04 -0.12 -1.39 -0.57 -0.97 0.13 -1.48 3.31 -1.18 0.02

(3) Stock excess return 0.17 -2.06 -0.16 0.07 0.04 -2.57 4.11 -4.93 2.43 0.56 0.11

3.30 -2.60 -0.51 0.99 2.79 -1.00 1.76 -2.44 1.81 0.49 0.00

(4) Dividend-price ratio -0.13 1.34 0.21 -0.06 0.97 2.77 -4.22 4.46 -2.24 -0.49 0.96

-2.36 1.65 0.64 -0.84 68.49 1.05 -1.76 2.15 -1.63 -0.42 0.00

(5) 1-yr zero-coupon bond return 0.00 0.16 -0.03 -0.01 0.00 -0.37 -0.11 -0.17 0.43 -0.07 0.13

-0.59 1.81 -0.96 -1.91 -0.30  

  

    

  

    

  

    

  

  

-1.31 -0.41 -0.78 2.90 -0.55 0.00

(6) 2-yr zero-coupon bond return -0.01 0.22 -0.05 -0.03 0.00 -0.21 -0.46 -0.32 0.72 -0.08 0.10

-0.54 1.41 -0.78 -1.92 -0.33 -0.41 -0.97 -0.79 2.66 -0.37 0.01

(7) 3-yr zero-coupon bond return -0.01 0.24 -0.03 -0.04 0.00 -0.47 0.03 -1.01 1.18 -0.24 0.11

-0.52 1.11 -0.31 -1.92 -0.36 -0.66 0.05 -1.83 3.24 -0.76 0.01

(8) 4-yr zero-coupon bond return -0.01 0.25 -0.03 -0.05 0.00 -1.10 0.34 -0.73 1.01 -0.28 0.09

-0.50 0.91 -0.28 -2.02 -0.38 -1.24 0.42 -1.05 2.19 -0.72 0.03

(9) 5-yr zero-coupon bond return -0.01 0.26 -0.01 -0.05 0.00 -0.94 0.09 -0.88 1.68 -0.71 0.09

-0.52 0.81 -0.06 -1.94 -0.42  -0.91 0.10 -1.08 3.13 -1.55 0.02

Note: Column labeled ‘const.’ contains the OLS estimate of the intercept vector Φ0, while columns (1) to (9) contain the OLS estimate of the matrix Φ1, which 

contains the slope parameters for the vector of lagged dependent variables. The numbers in italics in the first 10 columns are t-values. The final column con-

tains R2 and (in italics) p-values from an F-test of joint significance for each equation. All variables are in logs. Q = 214 quarterly observations. 



Appendix to J. Inkmann and D. Blake: Pension Liability Valuation and Asset Allocation … 37

Table B3: Residual correlation matrix 

  (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Nominal T-bill return 0.17 -0.50 -0.17 0.18 -0.78 -0.71 -0.64 -0.61 -0.57
(2) Bond excess return  4.67 0.19 -0.20 0.76 0.85 0.88 0.91 0.93
(3) Stock excess return   7.41 -0.98 0.16 0.14 0.12 0.13 0.11
(4) Dividend-price ratio    7.59 -0.17 -0.16 -0.14 -0.14 -0.13
(5) 1-yr zero-coupon bond return     0.82 0.96 0.93 0.89 0.87
(6) 2-yr zero-coupon bond return      1.49 0.98 0.96 0.95
(7) 3-yr zero-coupon bond return       2.03 0.99 0.98
(8) 4-yr zero-coupon bond return        2.54 0.99
(9) 5-yr zero-coupon bond return         2.97

Note: Correlation matrix implied by the estimated residual variance-covariance matrix . Main di-

agonal elements contain standard deviations of quarterly residuals in %. 

Σ
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Appendix C: Figures  

 

Figure C1: Stock allocations, funding spreads, underfunding probabilities and recovery fractions as a 

function of the initial funding ratio for 5k =  years, 04.1=φ , 10=γ , 1=τ  
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 Note: As per Figure 3. 
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Figure C2: Stock allocations, funding spreads, underfunding probabilities and recovery fractions as a 

function of the initial funding ratio for 10k =  years, 04.1=φ , 5=γ , 1=τ  
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Note: As per Figure 3. 
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