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Abstract

We consider a multi-player situation in an illiquid market in which one player tries to liquidate
a large portfolio in a short time span, while some competitors know of the seller’s intention and try
to make a profit by trading in this market over a longer time horizon. We show that the liquidity
characteristics, the number of competitors and their trading time horizons determine the optimal
strategy for the competitors: they either provide liquidity to the seller, or they prey by simultaneous
selling. Depending on the expected competitor behavior, it might be sensible for the seller to pre-
announce a trading intention (“sunshine trading”) or to keep it secret (“stealth trading”).
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Introduction

A variety of circumstances such as a margin call or a stop-loss strategy in combination with a large price
drop can force a market participant to liquidate a large asset position urgently. Such a swift liquidation
may result in a significant impact on the asset price. Hence, intuitively it seems to be crucial to prevent
information leakage while executing the trade, for informed market participants (the “competitors”) could
otherwise try to earn a profit by predatory trading: they can sell in parallel with the seller and cover their
short positions later at a lower price. Probably the most widely known example of such a situation is the
alleged predation on the hedge fund LTCM1. Surprisingly, however, some sellers do not follow a secretive
“stealth trading” strategy but rather practice “sunshine trading”, which consists in pre-announcing the
trade to competitors so as to attract liquidity2.

Our goal in this paper is to analyze a model of a competitive trading environment in order to explain
the tradeoff that leads the seller to choose between stealth and sunshine execution and the competitors
to choose between predation and liquidity provision. We argue that these choices are driven by the
relations between the different liquidity parameters of the market, the number of competitors and the
time constraints for seller and competitors. In particular, we will show that completely different behavioral
patterns may emerge as optimal for the same set of agents when they are trading in markets of different
liquidity types. Since our model market allows for anonymous trading possibilities and will turn out as
being semi-strong efficient, our results are applicable to a wide variety of real-world markets including
most equity exchange markets.

To fully acknowledge the roles of the different liquidity parameters and of the number of competitors
of the seller, we need to relax all exogenous trading constraints in our model. In particular, we do not
require that competitors face the same time constraint as the seller. This assumption is reasonable as
sellers typically must achieve a trading target in a fixed and relatively short time horizon—e.g., a margin
call has to be covered by the end of the day—while competitors often may afford to maintain a long or
a short position for a number of days. In order to capture the structure of this situation, we consider a
two stage model of an illiquid market. In the first stage, the seller as well as the competitors trade; in
the second stage, only the competitors trade and unwind the asset positions they acquired during the
first stage. Liquidity effects are incorporated into our market model by applying a permanent as well
as a temporary impact as in the market model proposed by Almgren and Chriss (2001) and used by
Carlin, Lobo, and Viswanathan (2007). For the sake of simplicity, throughout this paper we focus on the
liquidation of a long position of assets; equivalent statements hold for the liquidation of a short position.

In our analysis of the optimal agent behavior in this model, we first assume that all strategic agents
know the seller’s liquidation intentions. We derive a Nash equilibrium of optimal trading strategies for the
seller and the competitors, and we show that, in equilibrium, the competitors’ optimal strategy depends
heavily on the liquidity type of the market. We identify two distinct types of illiquid markets: First, if the
temporary price impact dominates the permanent impact then prices show a high resilience after a large
transaction. The price in such “elastic” markets behaves similar to a rubber band: trading pressure can
stretch it, but after the trading pressure reduces, the price recovers. Such market conditions can occur
when it is difficult to find counterparties for a specific deal within a short time. In such a market, the
optimal strategy for the competitors is to cooperate with the seller: they should buy some of the seller’s
assets and sell them at a later point in time. On the other hand, if the permanent price impact of a trade
outweighs the temporary impact, then large transactions have a long-lasting influence. In such “plastic”
markets, the trading pressure exerts a “plastic deformation” on the market price. Such a situation can
arise when a large supply or demand of the asset is interpreted as the revelation of new information
on the fundamentals of the asset. Under these conditions the optimal behavior of the competitors is
the opposite: they should sell in parallel to the seller and buy back at a later point in time (predatory

1See, e.g., Lowenstein (2001), Jorion (2000) and Cai (2003)).
2See, e.g., Harris (1997) and Dia and Pouget (2006). A similar phenomenon occurs in the sometimes widespread

distribution of so-called “indications of interest” in which brokers announce tentative conditions for certain liquidity trades.
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trading). In this case, the price is pushed far down during the first stage and recovers during the second
stage, resulting in price overshooting. The latter effect disappears as the number of competitors increases;
for a large number of competitors, the market price incorporates the seller’s intentions almost instantly
and exhibits little drift thereafter. This effect indicates that our model market fulfills the semi-strong
form of the efficient markets hypothesis.

Through sunshine trading, the seller can increase the number of competitors. We find that in elastic
markets, the seller achieves a higher return when competitors are participating than when she is selling
by herself. Therefore, sunshine trading appears to be sensible in such a market. In a plastic market,
the seller’s return can be significantly reduced by competitors; however, as the number of competitors
increases, the optimal strategies for the competitors change from predation to cooperation and the re-
turn for the seller increases back, sometimes even above the level of return obtained in the absence of
competitors. Hence, if the seller has reason to believe that there is some leakage of information, it may
be sensible to take the initiative of publicly announcing the impending trade so as to turn around the
adverse situation of predation by few competitors into the beneficial situation of liquidity provision.

Although our approach is normative rather than descriptive, our model provides a number of em-
pirically testable hypotheses for both seller and competitor behavior. In our model, sunshine trading is
rational in elastic markets or when the trading horizon of the seller is comparatively short. We therefore
suspect that sunshine trades and indications of interest are usually short-term and occur in markets with
high temporary impact, while we conjecture that efforts to conceal trading intentions are particularly
strong in plastic markets.

We predict that competitors in plastic markets pursue predatory trading if they know about selling
intentions of other agents, while we expect them to provide liquidity in elastic markets. We are not
yet aware of any systematic study of informed competitors reactions to trading under varying market
liquidity. Such a study could be carried out, e.g., by analyzing the order flow after pre-announcement of
a sale. In plastic markets, we expect to see an initial increase in additional sell orders. In elastic markets,
we expect to see an increase in buy orders.

The analysis of distressed hedge funds lends anecdotal support to our hypothesis. During the LTCM
crisis in 1998, several competitors allegedly engaged in front-running and predatory trading, while no
individual investor was willing to acquire LTCM’s positions and thus provide liquidity. According to our
results, such a behavior is rational in plastic markets. The price evolution after the LTCM crisis indicates
that its liquidation had a predominantly permanent effect3, i.e., that the market was indeed plastic.

More recently, the hedge fund Amaranth experienced severe losses resulting in the need for urgent
liquidation4. Contrary to LTCM, Amaranth quickly found a buyer for its portfolio5. In the Amaranth
case, liquidity provision apparently appeared as the more profitable option for competitors compared to
predatory trading. How can the differences between competitors’ behavior in the LTCM and Amaranth
cases be explained? In both cases very large market participants were in distress, promising large profit
opportunities for competitors. However, Amaranth operated in the natural gas market, which behaved
elastic during a previous hedge fund liquidation6. According to our model liquidity provision is indeed
the most profitable behavior in such an elastic market.

The profitability of liquidity provision in elastic markets is confirmed by Coval and Stafford (2007),

3Lowenstein (2001, page 229) notes that: “(...) a year after the bailout [of LTCM], swap spreads remained (...) far
higher than when Long-Term had entered the (...) trade.”

4For a description of the Amaranth case, see Till (2006) and Chincarini (2007). Finger (2006) finds that “The events of
September [2006] led to the greatest losses ever by a single hedge fund, close to twice the money lost by Long Term Capital
Management.”

5Till (2006) notes that “Amaranth sold its entire energy-trading portfolio to J.P. Morgan Chase and Citadel Investment
Group on Wednesday, September 20th [2006].”

6Till (2006) observes that “There was a preview of the intense liquidation pressure on the Natural Gas curve on 8/2/06,
the day before the [natural-gas-oriented] energy hedge fund, MotherRock, announced that they were shutting down. (...) A
near-month calendar spread in Natural Gas experienced a 4.5 standard-deviation move intraday before the spread market
normalized by the close of trading on 8/2/06.”
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who find that providing liquidity to open-ended mututal funds that suffer severe cash outflows promises
average annual abnormal excess returns well over 10%. This supports our hypothesis since these profits
are made on the temporary nature of the price impact. Interestingly, the impact of stock sales in markets
that do not suffer from extreme cash outflows appears to be predominantly permanent, resulting in
profitable predatory trading opportunities for insiders.

Our research builds on previous work in three research areas. The first area to which our work is
connected is research on predatory trading. In previous studies, the size of the liquidation completely
determines the optimal action of the competitors. In these models, predatory trading is always optimal
for large liquidations. For small liquidations, predatory trading is always or never optimal, depending on
the model at hand.

Brunnermeier and Pedersen (2005) suggest a model in which the total rate of trading as well as the
asset positions of all traders face exogenous constraints. In their model, predation and price overshooting
occur necessarily, irrespective of the market environment. As a side effect of the exogenous trading
constraint, their model market is weakly inefficient: even if the number of informed competitors is large,
the market price changes continuously in reaction to the trading of the seller and the competitors.

Carlin, Lobo, and Viswanathan (2007) propose a model in which competitors can engage in and
refrain from predatory trading, however there is no room for liquidity provision. To explain abstinence
from predatory trading, they assume that all market participants repeatedly execute large transactions
in a fully transparent market; in such a repeated game, predation can be punished by applying a tit-
for-tat strategy. In their model, competitors always refrain from predatory trading provided that the
position of the seller is sufficiently small. Abstinence from predatory trading breaks down, however, if
the sales volume becomes too big. Although their analysis of a one stage game is also at the foundation
of our model, the two models diverge in their qualitative predictions: their model predicts that predatory
trading is most widespread in elastic markets, while our model predicts the opposite. Furthermore, the
mechanism establishing cooperation is fundamentally different; in particular, our model is applicable in
transparent, but also in anonymous markets.

Attari, Mello, and Ruckes (2005) discuss trading strategies against a financially constraint arbitrageur.
Price impact in their model market is entirely temporary, resulting in an elastic market with profitable
liquidity provision. By clever exploitation of the arbitrageur’s capital constraint, the competitors can
profitably engage in predatory trading, but only for arbitrageurs with very large asset positions.

In a second line of research, the effects of sunshine trading are investigated. In a theoretical investi-
gation, Admati and Pfleiderer (1991) propose a model in which sunshine trading is always increasing the
seller’s return as long as speculators do not face market entry costs. The underlying motives for sunshine
trading in this model and in our model are very different: in the model of Admati and Pfleiderer (1991),
sunshine traders can expect to obtain better trade conditions in the market since it is assumed that their
actions are not based on private information. In our model, we do not assume that sunshine trades have a
special motivation; instead, we show that sunshine trading under certain market conditions can raise the
attention of competitors and attract them to provide liquidity. A different market perception of sunshine
trades can easily be incorporated in our framework by applying different liquidity parameters for sunshine
trades and for unannounced trades. Empirical evidence on the benefit of trade pre-announcements ap-
pears to be mixed (see, e.g., Harris (1997), Dia and Pouget (2006)), which is in line with our observation
that the potential benefit of sunshine trading depends on the liquidity characteristics of the market.

The third line of research consists of empirical investigations and theoretical modeling of the market
impact of large transactions. The empirical literature is extensive7. These empirical results, most notably
the identification of temporary and permanent impact, have led to theoretical models of illiquid markets.

7See, e.g., Kraus and Stoll (1972), Holthausen, Leftwich, and Mayers (1987), Holthausen, Leftwich, and Mayers (1990),
Barclay and Warner (1993), Chan and Lakonishok (1995), Biais, Hillion, and Spatt (1995), Kempf and Korn (1999), Chordia,
Roll, and Subrahmanyam (2001), Chakravarty (2001), Lillo, Farmer, and Mantegna (2003), Mönch (2004), Almgren, Thum,
Hauptmann, and Li (2005), Coval and Stafford (2007), Obizhaeva (2007), Large (2007).
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One line of research focused on deriving the underlying mechanisms for these liquidity effects8. A second
line takes the liquidity effects as exogeneously given and derives optimal trading strategies within such
an idealized model market. We follow this second approach and apply the multi-player market model
of Carlin, Lobo, and Viswanathan (2007). Several alternative single-player models have been proposed,
see, e.g., Bertsimas and Lo (1998), Almgren and Chriss (2001), Almgren (2003), Butenko, Golodnikov,
and Uryasev (2005), Obizhaeva and Wang (2006), Engle and Ferstenberg (2007), Alfonsi, Schied, and
Schulz (2007), Frey (1997), Frey and Patie (2002), Bank and Baum (2004), Çetin, Jarrow, and Protter
(2004), Çetin, Jarrow, Protter, and Warachka (2006), Jarrow and Protter (2007). The advantages and
disadvantages of these models are still a topic of ongoing research.

The remainder of this paper is structured as follows. In Section I, we introduce the market model
and specify the game theoretic optimization problem. As a preparation for the general two stage model,
we review predation in a one stage model in Section II. In this model, the seller and the competitors
face the same time constraint, i.e., the competitors do not have the opportunity to trade after the seller
finished selling. In the main Section III, we turn to the more general two stage framework and derive our
main results. After introducing the model in Subsection A, we identify the Nash equilibrium of optimal
trading strategies in Subsection B and summarize the general properties in Subsection C. Thereafter, we
investigate the qualitative properties of our model in three example markets in Section IV. Section V
concludes. Appendix A contains additional propositions on the one stage model. All proofs of propositions
are given in Appendix B.

I The market model

We start by describing the market dynamics and trade motives of market participants. The market
consists of a risk-free asset and a risky asset. Trading takes place in continuous time. We assume that
the risk-free asset does not generate interest. In this market we consider n + 1 strategic players and a
number of noise traders. The strategic players are aware of liquidity needs in the market and optimize
their trading to profit from these needs. We assume that the number of strategic players (n + 1) is given
a priori. During our analysis, we will perform comparative statics and discuss the incentives for each
player to change the number of strategic players in the market.

We denote the time-dependent risky asset positions of the strategic players by X0(t), X1(t), ..., Xn(t)
and assume that they are differentiable in t. Each instantaneous order Ẋi(t) affects the market price in
the form of a permanent impact and a temporary impact. Trades at time t are thus executed at the price

P (t) = P̃ (t) + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t). (1)

Here, P̃ (t) is a one-dimensional arithmetic Brownian motion without drift, starting at P̃ (0) = P0 and
defined on a probability space (Ω,F ,P). This term reflects the price changes due to the random trades
of noise traders. The second term on the right hand side represents the permanent price impact resulting
from the change in total asset position of all strategic players. Its magnitude is determined by the
parameter γ > 0. The third term reflects the temporary impact caused by the net trading speed of all
strategic investors. Its magnitude is controlled by the parameter λ > 0. This price dynamics model was
introduced by Carlin, Lobo, and Viswanathan (2007) and extends the previous single-player models of
Bertsimas and Lo (1998), Almgren and Chriss (2001) and Almgren (2003).

In this market, the strategic players are facing the following optimization problem. Each player i
knows all other players’ initial asset positions Xj(0) and their target asset positions Xj(T ) for some fixed

8See for example Kyle (1985), Glosten and Milgrom (1985), Easley and O’Hara (1987), Foster and Viswanathan (1996),
Frey (1997), O’Hara (1998), Bondarenko (2001) and Biais, Glosten, and Spatt (2005).
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point T > 0 in the future9. We assume that these trading targets are binding; players are not allowed
to violate their targets. We furthermore assume that all agents are risk-neutral; they aim at maximizing
their expected return by choosing an optimal trading strategy Xi(t) given their boundary constraints on
Xi(0) and Xi(T ). In mathematical terms, each player is looking for a strategy that realizes the maximum

ri := max
Xi

E(Return for player i) = max
Xi

E

(∫ T

0

(−Ẋi(t))P (t)dt

)
(2)

= max
Xi

E


−

∫ T

0

Ẋi(t)


P̃ (t) + γ

n∑

j=0

(Xj(t)−Xj(0)) + λ

n∑

j=0

Ẋj(t)


 dt


 . (3)

Although in principle the strategies Xi might be predictable, we limit our discussion to deterministic10

strategies, where the function Xi does not depend on the stochastic price component P̃ (t). In such open-
loop strategies, all players determine their trade schedules ex ante11. Hence,

ri = max
Xi


−

∫ T

0

Ẋi(t)


P0 + γ

n∑

j=0

(Xj(t)−Xj(0)) + λ

n∑

j=0

Ẋj(t)


 dt


 . (4)

A set of strategies (X0, X1, ..., Xn) satisfying Equation (4) for all i = 0, 1, ..., n constitutes a Nash equi-
librium; we call such a set of strategies optimal. We denote the returns corresponding to the equilibrium
strategies by Ri := ri. These are determined by the expected price

P̄ (t) := E(P (t)) = P0 + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t). (5)

Whenever we refer to price or return in the following, we will always refer to the expected price P̄ (t)
and the expected return − ∫

Ẋi(t)P̄ (t)dt in equilibrium.

II The one stage model

In this section, we investigate the optimal strategies in a one stage framework: all players trade over the
same time interval [0, T1]. The results in this section will be used in the analysis of a two stage model in
the following sections.

The one stage framework was introduced by Carlin, Lobo, and Viswanathan (2007). We repeat their
result on optimal strategies in this setting:

9For the purposes of this paper, we assume that all strategic players have perfect information. For imperfect information,
we expect to obtain slightly changed dynamics (potentially including a “waiting game” as in Foster and Viswanathan (1996)),
but expect the qualitative results on predatory trading and liquidity provision to remain unchanged.

10In the following, we will find a Nash equilibrium within the set of deterministic strategies. Since we assumed risk
neutrality of all agents, these strategies also constitute a Nash equilibrium within the larger set of open-loop adaptive
strategies. The primary purpose of our restriction to deterministic strategies is to reduce the mathematical complexity.
Schied and Schöneborn (2008a) showed that the unique optimal adaptive strategy for a single seller is deterministic. We
thus believe that also in the multi-player setting all Nash equilibria in the set of adaptive strategies are actually deterministic
and that therefore our analysis identified the unique equilibrium.

11The analysis of closed-loop strategies in which players can dynamically react to other players actions is mathematically
more difficult. It is often not possible to derive closed-form solutions, on which we rely in the proof of Theorem 2. Carlin,
Lobo, and Viswanathan (2007) show numerically that closed-loop solutions of the one stage model (see Section II) are
similar to the open-loop solutions and do not exhibit any new qualitative features. Therefore, no major differences are
expected in the two stage model introduced in Section III.
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Parameter Value
Asset position X0 1
Initial price P0 10
Duration T1 1
Permanent impact sensitivity γ 3
Temporary impact sensitivity λ 1

Table I: Parameter values used for numerical computation of the figures in Section II.

Theorem 1 (Carlin, Lobo, and Viswanathan (2007)). Assume that n + 1 players are trading simultane-
ously in a time period t ∈ [0, T1]. They start with asset positions Xi(0) and need to achieve a target asset
position Xi(T1). Furthermore, these players are risk-neutral and are aware of all other players’ asset
positions and trading targets. Then the unique optimal strategies for these n + 1 players (in the sense of
a Nash equilibrium) are given by:

Ẋi(t) = ae−
n

n+2
γ
λ t + bie

γ
λ t (6)

with

a =
n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T1

)−1
∑n

i=0(Xi(T1)−Xi(0))
n + 1

(7)

bi =
γ

λ

(
e

γ
λ T1 − 1

)−1
(

Xi(T1)−Xi(0)−
∑n

j=0(Xj(T1)−Xj(0))
n + 1

)
. (8)

Proof. See Carlin, Lobo, and Viswanathan (2007).

The previous theorem assumes that n ≥ 1, i.e., at least two strategic players are active in the market.
It follows from the results in Almgren and Chriss (2001) and Almgren (2003) that for a single strategic
trader the optimal trading strategy is a linear increase / decrease of the asset position.

For the rest of this section, we consider the following specific situation: One player (say player 0) wants
to sell an asset position X0(0) = X0 in the time interval [0, T1), i.e. the target is given by X0(T1) = 0.
All other players (i.e., players 1, 2, ..., n) do not want to change their initial and terminal asset positions
(for simplicity, we assume that Xi(0) = Xi(T1) = 0 for i 6= 0), but they want to exploit their knowledge
of player 0’s sales.

The result is preying of the n players on the first player (see Figure 1 and 2; see Table I for the
parameter values used for the figures): while the first player is starting to sell off her asset position, the
other players sell short the asset and realize a comparatively high price per share. Toward the end of the
trading period, the price has been pushed down by the combined sales of both seller and competitors.
While the seller liquidates the remaining part of her long position at a fairly low price, the other players
can now close their short positions at a favorable price. Since the price has dropped, the preying players
need to spend less on average for buying back than they received for initially selling short. In the following,
we refer to player 0 as the “seller” and to the players 1, 2, ..., n as the “competitors”.

In the one stage model considered so far, there is no room for cooperation; preying always occurs.
The seller’s return is further deteriorating as the number of competitors increases; preying becomes more
competitive with more players being involved (see Figure 3). We will see in the next section that relaxing
the exogenous time constraint on the positions of competitors can lead to a more differentiated behavior.
It includes in particular the possibility of liquidity provision to the seller.

7



0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1

Asset positions Xi(t)

Time

Figure 1: Asset positions Xi(t) over time in the one-stage model. The solid line represents the seller, the
dashed line the competitor (n = 1).
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Figure 2: Trading rates Ẋi(t) over time in the one-stage model. The solid line represents the seller, the
dashed line the competitor (n = 1).
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Figure 3: Expected cash return for the seller (player 0) from selling X0 shares, depending on the number n
of competitors in the one-stage model. The expected return in absence of competitors is 7.5 (intersection
point of x- and y-axes). The grey line at the bottom corresponds to the limit n →∞.

III The two stage model

A The model

In the previous section, we have assumed that the seller and the competitors are limited to trade during
the same time interval. As we have mentioned earlier, in reality the seller is often facing a stricter time
constraint than the competitors do. While the seller usually needs to liquidate her asset position within
a few hours, the competitors can often afford to close their positions at a later point in time. In the
following, we therefore extend the one stage model considered so far to a two stage framework12 and
assume that:

• In stage 1, all players (the seller and the competitors) are trading.

• In stage 2, only the competitors are trading; the seller is not active.

The first stage runs from t = 0 to T1, the second stage13 from T1 to T2. The asset position of player i is
denoted by Xi(t) with t ∈ [0, T2]. We require the strategies Xi(t) to be differentiable within each stage,
but they need not be differentiable at t = T1.

12The framework can be extended further to a three stage model including a stage 0 in which only the competitors are
allowed to trade. Such a setup can capture the effects of front-running, which produces different results in particular for
price overshooting. We limit our analysis to the two stage model since in most practical cases, there is little room for
front-running due to legal constraints or insufficient time (i.e., stage 0 is very short); see the introduction for examples.
As another alternative, the model can account for a different trading horizon for each competitor. This increases the
mathematical complexity, but does not lead to qualitatively new phenomena within stage 1.

13In reality, the seller usually has to liquidate an asset position by the end of the trading day. In this case, the second
stage begins at the open of the next trading day. Our framework can easily be extended to accommodate for this setting
by having the second stage run from T̃1 > T1 to T2. Since we assumed that the seller and the competitors are risk-neutral,
this does not change any of the statements in this exposition; for notational simplicity, we therefore restrict ourselves to
the case where the second stage starts immediately after the first stage.
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The market prices are governed by

P (t) = P̃ (t) + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t) (9)

for t ∈ [0, T2]\T1. Again, P̃ (t) is an arithmetic Brownian motion without drift, starting at P̃ (0) = P0.
Since the Xi(t) might be non-differentiable at t = T1, the above formula might not be well-defined; we
therefore set

P (T1) = lim
t↘T1

P (t), P (T1−) := lim
t↗T1

P (t), (10)

forcing the price to be right-continuous.
The seller (player 0) is assumed to liquidate an asset position X0 = X0(0) > 0 during stage 1:

X0(t) = 0 for all t ∈ [T1, T2]. We assume that the n competitors want to exploit their knowledge of
the seller’s intentions, but do not want to change their asset position permanently. We therefore require
that the competitors have the same asset positions at the beginning of stage 1 and at the end of stage 2:
Xi(0) = Xi(T2). For notational simplicity, we assume Xi(0) = 0. This does not limit the generality
of our results, since the optimal trading speed Ẋi(t) of the competitors is independent of their initial
asset position Xi(0), as long as we require Xi(0) = Xi(T2). In particular, our results also hold in the
case where competitors have different initial asset positions. All assumptions and notation introduced in
Section I apply in our two stage model; in particular, we restrict our analysis to risk-neutral players14

following deterministic strategies.
There are no a-priori restrictions on competitors’ asset positions Xi(T1) at the end of stage 1. They

can be positive, i.e., the competitors buy some of the seller’s shares in stage 1 and thereby provide
liquidity to the seller. Alternatively, they can be negative, i.e., the competitors sell parallel to the seller,
driving the market price further down and preying on the seller. In the next section, we show that the
occurrence of liquidity provision or predation depends on the market characteristics, in particular on the
balance between temporary and permanent impact.

B Optimal strategies

We can now describe the optimal behavior of all n+1 strategic players in the two stage model introduced
in the previous subsection. If the optimal asset positions Xi(T1) of the competitors at the end of stage 1
are known, the entire optimal strategies are determined by Theorem 1: In stage 1, n + 1 players are
trading and the initial and final asset positions are known; in stage 2, n players are trading and again the
initial and final asset positions are known. Therefore, we only need to derive the optimal asset positions15

Xi(T1) for all competitors i = 1, 2, ..., n (see Figure 4 for an illustration).

Theorem 2. A unique open-loop Nash equilibrium exists in the two stage model defined in Subsection A.
In this equilibrium, all competitors acquire the same asset position during stage 1. This asset position

14Risk aversion can be incorporated in two different ways. The first is to regard the different execution time frame of
the seller and the competitors as proxies of their risk aversion. This provides a simple model of a highly risk averse seller
in a market environment with relatively risk-neutral competitors. Alternatively, risk aversion can explicitly be modeled
by introducing utility functions for the seller and the competitors. This leads to the coexistence of liquidity provision and
preying already in the one stage model introduced in Section II. The dynamics for a risk averse seller facing relatively
risk-neutral competitors are qualitatively very similar to the two stage model presented here. A detailed discussion of the
effects of risk aversion lie beyond the scope of this paper and are subject of ongoing research.

15Carlin, Lobo, and Viswanathan (2007) noted this for the single competitor case. They also conjectured that in a two
stage model there will be price overshooting. As we will see in Section IV and Proposition 11, the source of this price
overshooting is not necessarily the presence of strategic players. In fact, price overshooting is reduced by competitors in
elastic markets.
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Figure 4: Expected return R1 for a single competitor depending on her asset position X1(T1). Optimal
trading within stage 1 and stage 2 is assumed. Parameters are chosen as in the elastic market in Table
II.

depends only on the parameters γT1
λ , T2

T1
and n:

Xi(T1) = F

(
γT1

λ
,
T2

T1
, n

)
X0 for all i ∈ 1, . . . , n. (11)

The function F is given in closed form in the proof in Appendix B. For the special case n = 1, we obtain

X1(T1) = −

(
−2− e

γT1
3λ − e

2γT1
3λ + e

γT1
λ

)
γ
λ (T2 − T1)

6
(
−1 + e

γT1
λ

)
+

(
2 + e

γT1
3λ + e

2γT1
3λ + 2e

γT1
λ

)
γ
λ (T2 − T1)

X0. (12)

Formulas 11 and 12 do not depend on γ and λ separately, but only on the fraction 16 γT1
λ = γ

λ/T1
, which

can be interpreted as a normalized ratio of liquidity parameters. The permanent impact parameter γ has
unit “dollars per share” and is independent of the time unit. The temporary impact parameter λ has unit
“dollars per share per time unit” and thus depends on the time unit. The fraction λ/T1 can be interpreted
as the temporary impact parameter normalized to the length of the first stage. The economic meaning
of the ratio γ

λT1 respectively γ
λ becomes most apparent by considering two polar market extremes:

• In elastic markets the major part of the initial total market impact vanishes after the execution
of a market order (i.e., temporary impact λ >> permanent impact γ). The market price in such
markets behaves similar to an elastic rubber band: trading pressure can stretch it, but after the
trading pressure reduces, the price recovers.

16Since the dependence of F on n is non-reciprocal, the joint strategy of the competitors changes as the number of
competitors increases (see also the dependence on n in Theorem 1), resulting in a reduced joint profit of the competitors.
Hence, the competitors have an incentive to collude. Such collusion could take on two forms. First, the n competitors
can agree to each trade 1/nth of the strategy of a single competitor. This way they optimize their proceeds as a group.
However, each competitor has an incentive to deviate from the agreed strategy. Since all competitors need to be controlled
at all points in time in order to avoid deviating, such an intensive collusion might be impossible. A second form of collusion
requiring less control is an agreement about the asset position at the end of the first stage. When setting this target asset
position at the right level, the competitors can increase their proceeds as a group while only controlling each other’s asset
position at one point in time.
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• In plastic markets the price impact of market orders is predominantly permanent (i.e., perma-
nent impact γ >> temporary impact λ). In such markets, the trading pressure exerts a “plastic
deformation” on the market price.

Empirical studies report that the fraction γ
λ takes a wide range of values and thus that markets are

indeed sometimes plastic and sometimes elastic. Holthausen, Leftwich, and Mayers (1987) find that for
their data sample, 75% of the total price impact of large transactions was temporary, while the follow-up
study (Holthausen, Leftwich, and Mayers 1990) finds that for a different sample 85% of the total price
impact was permanent. Coval and Stafford (2007) show that in markets where investors withdraw their
money from open-ended mutual funds, the total price impact of transactions is predominantly temporary,
while in other markets the price impact is predominantly permanent. The anecdotal evidence presented
in the introduction indicates that the market for derivatives traded by LTCM was plastic, whereas the
energy market was elastic during the Amaranth crisis. We devote the major part of this paper to the
influence of the factor γ

λ (respectively γ
λT1) on optimal strategies and liquidation proceeds.

Remark. It is not hard to see that the optimal asset position Xi(T1) does not depend on λ and γ
individually, but only on their ratio γ/λ. For any given strategies for the seller and the competitors, dou-
bling both γ and λ will double the liquidity loss of the seller and double the proceeds of each competitor.
Since this linear scaling holds irrespective of the chosen strategy, we find that a Nash equilibrium with
respect to the original parameters γ and λ is also a Nash equilibrium with respect to the parameter 2γ
and 2λ. Therefore the optimal asset position Xi(T1) is unchanged by multiplying both γ and λ by the
same constant, i.e., it does not depend on γ and λ independently, but only on their ratio γ/λ. A similar
reasoning shows that Xi(T1) is unchanged when T1, T2 and λ are multiplied by the same constant. This
establishes the parameter dependence expressed by the function F in Equation 11. The exact functional
form of the function F is very complicated and is therefore deferred to Appendix B.

Due to the complexity of the function F , it is hard to make any general statements about its behavior,
even on such simple properties as the sign. By close inspection of Equation 12, we can however observe
that at least in the case of a single competitor the sign of X1(T1) is positive for small γ

λT1 (liquidity
provision in elastic markets) and negative for large γ

λT1 (predation in plastic markets). This is a first
indication of the richer dynamics in the two stage model compared to the one stage model. In the next
section, we look into these relations in more detail for the limiting case n →∞.

C General properties

Since the quantitative formulas describing the Nash equilibrium in Theorem 2 are very complicated, it
is hard to derive qualitative properties of the model in full generality. However, the formulas simplify in
competitive markets (n →∞) and qualitative statements can be derived. In this subsection we therefore
focus on the limit case n →∞, for which we find rational sunshine and stealth trading as well as predatory
trading and liquidity provision. In the subsequent Section IV, we discuss numerical examples that provide
intuition for our results for the limit case n →∞ and also illustrate the rich set of phenomena occurring
for smaller values of n << ∞.

C.1 Competitor behavior: Predatory trading versus liquidity provision

There are two facets of competitors’ behavior: their trading during the first stage as a whole, which can
be described by their asset position Xi(T1) at the end of the first stage, and their trading strategy within
the first stage, which is given by Ẋi(t) for 0 ≤ t ≤ T1. We analyze these two facets one after the other.

Proposition 3. As the number of competitors n tends to infinity, the combined asset position of all
competitors at the end of stage 1 converges to

lim
n→∞

n∑

i=1

Xi(T1) = lim
n→∞

nX1(T1) =
e

γ(T2−T1)
λ − 1

e
γ(T2)

λ − 1
X0. (13)
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In economic terms, this implies that for large n, some inter-stage cooperation between the seller and
the competitors occurs regardless of the market parameters: since

e
γ(T2−T1)

λ − 1

e
γ(T2)

λ − 1
> 0,

the competitors buy a portion of the seller’s asset position in stage 1 and sell this portion in stage 2. The
market thus functions efficiently: the competitors provide the liquidity needed by the seller and later on
unload their inventory to the general market. It is important to stress that this is only the case when
n is large. For small n, each competitor can influence market prices more easily since she is facing a
smaller number of informed players that bring the market back into balance. “Selfish” strategies such as
prolonged predatory trading thus become more attractive, and for a small number of competitors, their
asset position Xi(T1) does not need to have the same sign as X0. In Section IV, we will provide explicit
numerical examples in which such predatory trading occurs.

We can draw an intuitive consequence of Proposition 3 for elastic markets: If the number of competi-
tors is high, then the net sale of seller and competitors in each stage is proportional to the time available
for selling. The following corollary expresses this in mathematical terms when sending λ to ∞.

Corollary 4. As the number of competitors n and the temporary price impact coefficient λ tend to
infinity, the combined asset position of all competitors at time T1 converges:

lim
λ→∞

lim
n→∞

n∑

i=1

Xi(T1) =
T2 − T1

T2
X0 (14)

We summarize the drivers of inter-stage cooperation.

Corollary 5. The proportion of the seller’s asset position bought by the strategic players in stage 1 is
given by ∑n

i=1 Xi(T1)
X0

= nF

(
γT1

λ
,
T2

T1
, n

)
. (15)

In the limit n →∞, the amount of liquidity provision depends on the drivers γT1/λ, T2/T1, and n in the
following way:

lim
n→∞

∂

∂(γT1/λ)
nF < 0 lim

n→∞
∂

∂(T2/T1)
nF > 0 lim

n→∞
∂

∂n
nF > 0. (16)

In economic terms, the previous corollary states that for a large enough number n of competitors, the
liquidity provision by strategic players in stage 1 is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

The first driver highlights the importance of the market environment; inter-stage cooperation is re-
duced in plastic markets. The second driver relates to the influence of risk management. If the competitors
have enough capital, they will be willing to hold inventory for a long period of time, i.e., T2 >> T1. On
the other hand, if they are in a financially weak condition, risk management is likely to limit the max-
imum holding period T2 in order to reduce the associated risk. The third driver reflects the effect of
limited competition among strategic players. By a combination of the latter two drivers, liquidity can
disappear in a self-exciting vicious circle: Financial distress of some market participants can result in a

13



general tightening of risk management practices and a smaller number of players engaging in strategic
trading, leading to increased predatory trading and more distressed players.

In our two stage model, inter-stage cooperation is gradual. It is higher in elastic than in plastic
markets, since prices are more strongly dislocated by trades in elastic markets and therefore heavier
trading by informed competitors is required to bring the market price back to fundamentally justified
levels. In the repeated game model of Carlin, Lobo, and Viswanathan (2007), cooperation is not gradual,
but binary: either competitors prey, or they refrain from preying. Carlin et al. obtain a result opposite
to ours: In their model, cooperation is more likely in plastic markets than in elastic markets17, since
the benefits of cooperation grow with the permanent impact γ. Unfortunately, we are not aware of any
empirical study of the drivers of cooperation and predation in real-world markets and therefore can only
refer to the anecdotal examples given in the introduction.

In spite of the monotonicity established in Corollary 5, the total net amount of liquidity is always
positive for large n (see Proposition 3). The monotonicity described for large numbers n of competitors
does not necessarily hold for smaller numbers n. We will see examples for this in Section IV.

Proposition 3 and Corollaries 4 and 5 describe the asset position of the competitors at the end of
the first stage. Although for large n we observe inter-stage cooperation, this does not necessarily imply
that the seller is benefiting from the competitors’ trading. Within the first stage, the trading of the
competitors can significantly reduce her trading proceeds. In spite of inter-stage cooperation, there is still
room for both intra-stage predation and intra-stage cooperation.

Proposition 6. In competitive markets (n → ∞), the combined trading rate of the competitors at time
0 is

lim
n→∞

n∑

i=1

Ẋi(0) =
γ

λ

2e
γ
λ T2 − e

γ
λ (T1+T2) − 1(

e
γ
λ T1 − 1

) (
e

γ
λ T2 − 1

) X0. (17)

For X0 > 0 it is increasing within the first stage:

lim
n→∞

n∑

i=1

Ẋi(t2) > lim
n→∞

n∑

i=1

Ẋi(t1) for all 0 ≤ t1 < t2 < T1. (18)

In spite of being net liquidity providers in the first stage, the competitors can either be liquidity
providers throughout the first stage, i.e., they can be pure liquidity providers, or they can first sell in
parallel to the seller but buy back more than they sold short before the first stage ends, i.e., engage in
intra-stage predatory trading. The next corollary provides a simple measure that determines which of the
two behaviors is optimal.

Corollary 7. In competitive markets (n →∞), the competitors are pure liquidity providers, i.e.,

lim
n→∞

n∑

i=1

Ẋi(t) > 0 for all 0 ≤ t ≤ T1 (19)

if and only if
T2

T1
> − ln

(
2− e

γ
λ T1

)
γ
λT1

. (20)

Otherwise, they engage in intra-stage predatory trading, i.e.,

lim
n→∞

n∑

i=1

Ẋi(0) < 0.

17See Result 4 and the remark thereafter in Carlin, Lobo, and Viswanathan (2007).
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Figure 5: Cooperation versus intra-stage predation in competitive markets (n →∞) as a function of the
fractions γ

λT1 and T2/T1. The shaded area corresponds to pure cooperation, the white area to intra-stage
predation.

Equation 20 depends only on the fractions T2
T1

and γ
λT1. Figure 5 illustrates the regions of intra-stage

cooperation and predation. Pure intra-stage cooperation is possible if the market is sufficiently elastic
( γ

λT1 is small) and the competitors’ time horizon T2 is sufficiently larger than the seller’s time horizon T1.
If the market is plastic, then the competitors will always initially sell in parallel to the seller, since the
profit opportunity due to the expected price decline caused by the permanent impact is too attractive.
In particular, if γ

λT1 > ln(2) ≈ 0.69, then intra-stage predation occurs irrespective of the competitors’
time horizon. On the other hand, in the limit of a completely elastic market, we obtain

lim
γ
λ T1→0

− ln
(
2− e

γ
λ T1

)
γ
λT1

= 1. (21)

Equation 20 is thus fulfilled for all T2 > T1, and we obtain pure liquidity provision by the competitors ir-
respective of their time horizon T2. For intermediate markets, the competitors’ time horizon T2 influences
the sign of the initial trading speed of the competitors. A shorter time horizon T2 gives the competitors
less time to unwind any long positions they obtained during the first stage. For small T2/T1, the model
is thus similar to the one-stage model for which we expect to see intra-stage predation.

C.2 Seller behavior: Stealth versus sunshine trading

We now turn to the return that the seller can expect to receive in a market with a certain number n of
strategic competitors.

Theorem 8. By selling an asset position X0 in stage 1, the seller receives an average total cash position
of

R0 = X0

(
P0 − γX0G

(
γT1

λ
,
T2

T1
, n

))
. (22)
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The function G is given in closed form in the proof in Appendix B. For large n, the seller’s return is

• decreasing in γT1/λ,

• increasing in T2/T1, and

• increasing in n.

It converges to:

lim
n→∞

R0 = X0

(
P0 − γX0

1
1− e−

γ
λ T2

)
(23)

Given the result above, the benefits of sunshine trading can easily be quantified. If the seller’s
intentions remain secret, she can expect a return of

X0 (P0 − γX0/2− λX0/T1) . (24)

Alternatively, she can pre-announce her intentions, attract a large number of competitors and thus expect
a return of

X0

(
P0 − γX0

1
1− e−

γ
λ T2

)
. (25)

Proposition 9. Assuming that pre-announcement of sales attracts a large number of competitors (n →
∞), sunshine trading is superior to stealth trading if

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

. (26)

If the competitors do not face any material time constraint (T2 →∞), sunshine trading is beneficial if

γ

λ
T1 < 2. (27)

For the case of an infinite number of potential competitors who face no material time constraint
(n →∞ and T2 →∞), we can differentiate three cases by Corollary 7 and Proposition 9:

• For 0 ≤ γ
λT1 ≤ ln 2, informed competitors provide liquidity during the entire first stage. Sunshine

trading is thus obviously the optimal execution strategy for the seller.

• For ln 2 < γ
λT1 < 2, competitors first sell in parallel to the seller, however quickly buy back and

provide liquidity, resulting in an overall increase in expected liquidation proceeds for the seller and
thus an incentive to sunshine trade.

• For γ
λT1 > 2, the negative effects of intra-stage predation outweigh the positive effects of inter-stage

cooperation, and the seller is better off by stealth trading.

The same differentiation into three cases also holds in competitive markets when the competitors face a
material time constraint (n →∞, but T2 << ∞). However the algebraic expressions for the boundaries
for γ

λT1 are not as simple and depend on the time constraint T2. For the case of a finite number of
competitors n << ∞, the above characterization becomes significantly more difficult. The choice of
sunshine and stealth execution then depends not only on the fraction γ

λT1, but also on the number n of
competitors that can be attracted by preannouncement. Due to the complexity of the resulting formulas,
we limit our analysis of the case n << ∞ to numerical examples in Section IV.

In our model, the market liquidity parameters γ and λ and the length of the two stages T1 and T2−T1

determine whether sunshine trading is beneficial. These drivers are not relevant in existing models. Most

16



notably, sunshine trading is always beneficial in the model used by Admati and Pfleiderer (1991), while
it is never beneficial in equilibrium in the model of Brunnermeier and Pedersen (2005).

In the previous discussion, we assumed that pre-announcing a trade does not change market-wide
liquidity. In case sunshine traders are structurally special, this assumption can be weakened by changing
λ and γ for sunshine trades. For example, Admati and Pfleiderer (1991) assume that sunshine traders
are uninformed; their trades should therefore result in a smaller (or possibly even no) permanent price
change. This can be incorporated by assuming a smaller value of γ for sunshine trades.

C.3 Price evolution

We now analyze the market prices resulting from the combined trading activities of the seller and the
competitors in more detail. When trading commences in t = 0, the expected price jumps downward
from its level P̄ (0−) = P0 to P̄ (0) = P0 + λ

∑n
i=0 Ẋi(0) due to the temporary impact of the selling.

After the initial price jump, the expected price P̄ (t) is exhibiting a downward trend in equilibrium (see
Section IV). This indicates that our model market does not fulfill the strong form of the efficient markets
hypothesis as introduced by Fama (1970): if relevant information is shared by only a small number of
market participants, then this information is only slowly reflected in market prices. On the other hand,
empirical evidence suggests that capital markets are efficient in the semi-strong sense. We would therefore
expect that if the seller’s intentions are known by a sufficiently large number of market participants, this
information is instantaneously fully reflected in market prices. Public information can thus not be used to
predict price changes. The following proposition states that this is indeed the case in our market model.

Proposition 10. The absolute value of the drift | ˙̄P (t)| is a decreasing function of the number of com-
petitors n. In the limit, the expected market price instantaneously jumps to

P0 − γ

1− e−
γ(T2)

λ

X0 (28)

and is constant from thereon throughout stage 1 and stage 2 until the end of stage 2.

The preceding proposition yields an interpretation for the asymptotic expected return of the seller
derived in Theorem 8: the asymptotic expected return in Equation 23 is equal to the initial asset position
X0 times the asymptotic expected price in Equation 28.

In plastic markets, the initial price jump |P̄ (0) − P0| is an increasing function of the number n of
competitors, while it is a decreasing function of n in elastic markets. It is interesting to note that the
new equilibrium price P0 − γ

1−e−
γ(T2)

λ

X0 does not depend on whether the seller can trade in stage 2

(see Proposition A.1). When discussing numerical examples in Section IV, we also give an intuitive
explanation of the forces that ensure the semi-strong efficiency in our model.

To formally discuss price overshooting, we include the time after T2 in our analysis, i.e., the time
after the seller and the competitors have stopped trading. The temporary impact of the trades during
[0, T2] vanishes immediately at T2; therefore, only the permanent impact remains. The seller sold X0

while the competitors did not change their asset positions. Therefore we obtain an expected market price
of P̄ (T2+) = P0 − γX0 for the time after T2. If during the trading phase [0, T2] the price drops below
P̄ (T2+), i.e.,

min
t∈[0,T2]

P̄ (t)− P̄ (T2+) < 0 (29)

we say that the price overshoots. We can now describe the relationship between price overshooting and
predatory activity.

Proposition 11. The price P̄ (t) attains its minimum in the interval [0, T2] at the end of the first stage:

min
t∈[0,T2]

P̄ (t) = P̄ (T1−) (30)
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Parameter Elastic Plastic Intermediate
market market market

Asset position X0 1
Initial price P0 10
Duration T1 of stage 1 1
Duration T2 − T1 of stage 2 1
Permanent impact sensitivity γ 1 3 1.8
Temporary impact sensitivity λ 3 1 1

Table II: Parameter values used for numerical computation in Section IV.

Price overshooting occurs irrespective of the presence of competitors:

P̄ (T1−) < P̄ (T2+). (31)

The level of price overshooting P̄ (T2+)− P̄ (T1−) is increased by competitors only in very plastic markets,
i.e., only if the permanent impact is much larger than the temporary impact. In all other circumstances,
price overshooting is reduced by competitors. If competitors are already active in the market (n ≥ 1),
then additional competitors reduce price overshooting irrespective of the market character.

It is interesting to compare our results to the models introduced by Brunnermeier and Pedersen
(2005) and by Carlin, Lobo, and Viswanathan (2007). Preying introduces price overshooting in the first
framework, but it reduces price overshooting in the latter (see Proposition A.2); in our model, the effect
of preying on price overshooting depends on the market. In all three models, price overshooting is reduced
by additional competitors (assuming that at least one competitor is active).

IV Example markets

In this section, we numerically analyze the optimal strategies for the seller and the competitors and their
impact on the proceeds of the seller and on the market price. We focus on the qualitative influence of
the ratio γT1

λ and of the number of competitors n. For notational simplicity, we will assume that T1 = 1,
T2 = 2 and thus restrict our discussion to the impact of the parameters γ, λ and n.

We first investigate the two polar market extremes of elastic and plastic markets (see Section III.B for
a definition). In many practical cases, the market will fall into neither of these two categories. Instead
temporary and permanent impact will be balanced. We therefore conclude our case analysis by reviewing
an intermediate market, that is, a market where temporary and permanent impact are balanced: λ ≈ γ.
For the numerical computations, we used the parameter values given in Table II.

A Example market 1: Elastic market

To begin with, let us assume that no competitors are active in the market. In such a situation, it is optimal
for the seller to sell her asset position linearly (Figure 6). We therefore expect that the market price
in stage 1 drops dramatically (Figure 7), since in order to satisfy the seller’s trading needs, liquidity is
required fast—which is expensive in an elastic market. In stage 2, the seller no longer generates temporary
impact, and the price bounces back. Furthermore, since the permanent impact is comparatively small,
the price recovers almost completely.

A competitor knowing of the seller’s intentions would expect this price pattern. Her natural reaction
would therefore be to buy some of the seller’s shares in stage 1 at a low price and to sell them in stage 2
at a higher price. Figure 8 shows that this is indeed what happens when the seller and the competitors
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Figure 6: Asset position X0(t) of the seller when no competitors are active.

follow their optimal strategies. In our example, the competitors are pure liquidity providers: they are
buying throughout the entire first stage, in line with Proposition 6 and Corollary 7.

As can be seen in these figures, the relationship established for large n in Corollary 5 holds for all n
in our example: The total asset position

∑n
i=1 Xi(T1) acquired by the competitors at the end of stage 1

increases as the number of competitors increases (see also Figure 9). To gain some intuition for this
phenomenon, let us assume that n1 competitors optimally acquire a joint asset position of n1Y1 shares.
Imagine one of the competitors increases her target asset position by 1. This will decrease the profit per
share that she makes, but adds another share to her profitable portfolio. If the original target position
Y1 is optimal, then this increase will leave her total profit roughly unchanged:

Profit per share× 1−Decrease in profit per share× Y1 ≈ 0. (32)

Let us now assume that n2 > n1 competitors are active and that they jointly acquire n1Y1 shares. Now,
increasing the target position n1Y1

n2
of an individual competitor by one share changes the competitor’s

total profit by

Profit per share× 1−Decrease in profit per share× n1Y1

n2
> 0. (33)

Therefore each competitor has an incentive to increase the trading target for the end of stage 1, resulting
in an increased joint trading target.

The effect of the competitors’ trading (buying in stage 1, selling in stage 2) is that prices between
stage 1 and stage 2 will even out, as predicted by Propositions 10 and 11: The large price jumps expected
in the absence of competitors will disappear if the number of competitors is large enough (see Figure 10).
The price overshooting created by the selling pressure of the seller is therefore reduced by the competitors.

From the seller’s perspective, the competitors’ trading is beneficial; by buying some of her shares, the
competitors reduce the seller’s market impact and thus increase her return. As we have just discussed, a
larger number of competitors implies a larger combined purchase by the competitors. Hence, the seller
can expect to profit from each additional competitor, i.e., the larger the number of competitors, the
larger her profit. This is illustrated by Figure 11; the seller’s return is higher when competitors are active
than it is when there are no competitors. The monotonicity with respect to n established in Theorem 8
therefore holds for all n in this example.
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Figure 7: Expected price P̄ (t) in an elastic market over time when no competitors are active; at time
t = 1, stage 1 ends and stage 2 begins.
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Figure 8: Asset positions Xi(t) over time in an elastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n com-
petitors. The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to
n = 100.
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Figure 9: Joint asset position
∑n

i=1 Xi(T1) of all competitors in an elastic market at time T1 depending
on the total number n of all competitors. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).
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Figure 10: Expected price P̄ (t) in an elastic market over time depending on the number of competitors
n; at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey
line to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed;
furthermore, P̄ (0) is smaller than P0 = 10.
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Figure 11: Expected return R0 for the seller in an elastic market, depending on the number of competitors.
The grey line represents the limit n →∞. The return for the seller without competitors is at the
intersection of x- and y-axis.

The practical implications are evident: in an elastic market, it is sensible to announce any large,
time-constrained asset transaction directly at the beginning of trading in order to attract liquidity.

B Example market 2: Plastic market

We will now turn to plastic markets, i.e., markets with a permanent impact that considerably exceeds
the temporary impact. In such a setting, we expect the price dynamics to be very different from the
dynamics described for elastic markets in the previous subsection.

Let us again assume that no competitors are active. Then the optimal trading strategy for the seller
is again a linear decrease of the asset position (see Figure 6). In stage 1, the seller is constantly pushing
the market price further and further down; we therefore expect the price to be high at the beginning of
stage 1 and low at the end of stage 1 (see Figure 12). In stage 2, the price will bounce back, since the
temporary impact of the seller’s trading has vanishes. However, this jump will be comparatively small
because the temporary price impact is small.

For a competitor, this implies that buying some of the seller’s shares in stage 1 does not promise any
large profit; the price reversion in stage 2 is too small. Instead, it appears more profitable to exploit the
price change within stage 1 rather than between stage 1 and stage 2. By selling short the asset at the
beginning of stage 1 and buying it back at the end of stage 1, she can likely make a large profit. Thus, we
expect to see preying behavior similar to the behavior in the one stage framework discussed in Section II.
Our hypothesis is verified by the numerical results shown in Figure 13.

We observe that for all n there is intra-stage predation. The asset position Xi(T1) of the competitors
at the end of the first stage however changes from a short position to a long position as the number of
competitors increases. This change from inter-stage predation to inter-stage cooperation is required by
Corollary 5 and can be explained intuitively in the following way. For a small number of competitors
the price evolution will be sufficiently close to the one shown in Figure 12, therefore preying is attractive
and the competitors will enter stage 2 with a short position. As the number of competitors increases,
the price curve flattens within the first stage due to the increased competition for profit from predatory
trading (Figure 14; see also Proposition A.1 in the appendix). Therefore the recovery of prices between
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Figure 12: Expected price P̄ (t) in a plastic market over time when no competitors are active; at time
t = 1, stage 1 ends and stage 2 begins.
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Figure 13: Asset positions Xi(t) over time in a plastic market; at time t = 1, stage 1 ends and stage 2
begins. The solid lines represents the seller, the dashed lines the combined asset position of all n com-
petitors. The black lines correspond to n = 2, the dark grey lines to n = 10 and the light grey lines to
n = 100.
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Figure 14: Expected price P̄ (t) in a plastic market over time depending on the number of competitors n;
at time t = 1, stage 1 ends and stage 2 begins. The black line corresponds to n = 2, the dark grey line
to n = 10 and the light grey line to n = 100. A significant reduction in price drift can be observed.

stage 1 and stage 2 now becomes attractive, even though it is relatively small. Similar to the line of
argument in elastic markets, it now pays off for the competitors to acquire a small asset position toward
the end of stage 1 in order to sell it during stage 2. This is illustrated in Figure 15. If the number of
competitors is small, it is beneficial to enter stage 2 with a short position; if the number of competitors
is large, it is more attractive to enter stage 2 with a long position.

Based on this line of argument, we expect the price overshooting to disappear if the number of
competitors is large. A single competitor however can decrease or increase price overshooting, depending
on how plastic the market is. In the plastic market considered in this section, even a single competitor
reduces price overshooting. But if the permanent impact is increased to 7.0 and all other parameters are
unchanged, a single competitor increases price overshooting.

Similar to the results of Section II, we might be tempted to expect that the return for the seller
decreases as the number of competitors increases and predation becomes more fierce. Figure 16 shows
that this is not the case and instead confirms the validity of Theorem 8. The return for the seller
is significantly decreased by competitors; furthermore, two competitors decrease it more than a single
competitor. However, the return for the seller is higher when three competitors are active than when only
two competitors are active; as soon as at least two competitors are active, each additional competitor is
beneficial for the seller.

The connection between the return for the seller and the number of competitors is a combination of
effects from the one stage model and the two stage model in an elastic market. The first effect (already
observed in the one stage model) is that a larger number of competitors leads to more aggressive preying
and hence to a reduced return for the seller. This effect is very strong for a small number of competitors,
but not for a large number of competitors. The second effect is that a larger number of competitors
also results in an increased total asset position

∑n
i=1 Xi(T1) of all competitors at the end of stage 1.

This reduces the trading pressure in stage 1 and therefore increases the return for the seller. The latter
effect dominates the first if the number of competitors is large. This illustrates that the monotonicity
established in Theorem 8 for large n can break down for small n.
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Figure 15: Joint asset position
∑n

i=1 Xi(T1) of all competitors in a plastic market at time T1 depending
on the total number n of all competitors. The grey line represents the limit limn→∞

∑n
i=1 Xi(T1).
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Figure 16: Expected return R0 for the seller in a plastic market, depending on the number of competitors.
The grey line represents the limit n →∞. The return for the seller without competitors is at the
intersection of x- and y-axis.
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Figure 17: Asset position X1(T1) of the competitors, depending on γ
λ . The black line corresponds to

n = 2, the dark grey line to n = 10 and the light grey line to n = 100. The other parameters are chosen
as in Table II.

C Example market 3: Intermediate market

In most cases, the differences between the temporary and permanent impact factors γ and λ will not
be as extreme as depicted in the two previous cases. If the two parameters are closer together, we can
expect to observe characteristics of both elastic as well as plastic markets:

• At the beginning of the first stage, the competitors “race the seller to market”, that is, they sell in
parallel to her (intra-stage predation).

• For a small number of competitors, the competitors end the first stage with either a long or a short
position depending on whether the market is more elastic or more plastic (see Figure 17).

• For a large number of competitors, the competitors buy back more shares than they sold at the
beginning of stage 1 (inter-stage cooperation).

• If the number of competitors is large, then price overshooting is reduced and market prices are
almost flat and almost the same in stage 1 and stage 2.

• If a certain minimum number of competitors is active, then additional competitors increase the
return for the seller since the increase in inter-stage cooperation outweighs the increase in intra-
stage predation.

One interesting question remains open so far. We have already seen that in elastic markets the
seller benefits from competitors, whereas in plastic markets the seller prefers to have no competitors at
all. What is the situation in an intermediate market? Of course, both effects may apply depending on
whether the market is more plastic or more elastic in nature. However, a new phenomenon can also arise:
It might be the case that a small number of competitors is harmful to the seller’s profits, but a large
number increases the profits even beyond the case of no predation (see Figure 18 for an example).

The practical implications are evident: If there are already some informed traders or if the seller
expects to be able to attract a sufficient number of competitors, announcing her trading intentions can
be attractive; if there is only a limited number of potential competitors she is best advised to conceal her
intentions.
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Figure 18: Expected return R0 for the seller in an intermediate market, depending on the number of
competitors. The grey line represents the limit n →∞. The return for the seller without competitors is
at the intersection of x- and y-axis.

V Summary and Conclusions

In a number of practical cases, investors need to liquidate large asset positions in a short time. In
this paper, we describe optimal liquidation strategies in case other market participants are aware of
the investor’s needs. A crucial assumption is that these competitors are not limited by the same time
constraint the seller is facing.

We solve a competitive trading game in an illiquid market model incorporating a temporary and a
permanent price impact. Each player faces a dynamic programming problem. According to our model,
the optimal strategies for these competitors depend on the liquidity characteristics of the market. If
the permanent impact affects market prices more heavily than the temporary impact, the competitors
will “race” the seller to market, selling in parallel with her and buying back after the seller sold her
asset position. If price impact is predominantly temporary, competitors provide liquidity to the seller by
buying some of her shares and selling them after the seller has finished her sale. In the first case, the
seller should conceal her trading intentions in order not to attract competitors, while in the latter case,
pre-announcing a trade can attract liquidity suppliers and thus be beneficial.

As a special case, we investigate behavior in a market with a very large number of competitors. We
find that in spite of illiquidity, such a market efficiently determines a new price. Information about the
seller’s intentions is immediately incorporated into the market price and does not affect it thereafter.
The competitors might race the seller to market, but even in markets with high permanent impact, they
quickly start buying back shares and sell these after the seller has finished her sale.

In conclusion, we believe that our analysis enhances the understanding of stealth and sunshine trading
as well as liquidity provision and predation in the marketplace.

A Propositions on the one stage model

We first state two propositions concerning the one stage model introduced in Section II. These are used
for comparison of the one stage model and the two stage model as well as in the proofs presented in
Appendix B.
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Proposition A.1. In the one stage model, the absolute value of the drift | ˙̄P (t)| is a decreasing function
of n. In the limit case n →∞, the expected market price instantaneously jumps to

P0 − γ

1− e−
γT1

λ

X0 (34)

and is constant from thereon until the end of trading at time t = T1.

Proof of Proposition A.1. Using the notation from Theorem 1, the combined trading speed of the
seller and all competitors amounts to

n∑

i=0

Ẋi(t) =
n∑

i=0

(ae−
n

n+2
γ
λ t + bie

γ
λ t) = (n + 1)ae−

n
n+2

γ
λ t. (35)

The change in combined asset position at time t is therefore:

n∑

i=0

(Xi(t)−Xi(0)) =
n∑

i=0

∫ t

0

Ẋi(s)ds =
∫ t

0

n∑

i=0

Ẋi(s)ds (36)

=
∫ t

0

(n + 1)ae−
n

n+2
γ
λ sds = (n + 1)

n + 2
n

λ

γ
a

(
1− e−

n
n+2

γ
λ t

)
(37)

Now, we can compute the expected market price:

P̄ (t) = P0 + γ

n∑

i=0

(Xi(t)−Xi(0)) + λ

n∑

i=0

Ẋi(t) (38)

= P0 + γ(n + 1)
n + 2

n

λ

γ
a(1− e−

n
n+2

γ
λ t) + λ(n + 1)ae−

n
n+2

γ
λ t (39)

= P0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ t)a (40)

= P0 + λ
n + 1

n
(n + 2− 2e−

n
n+2

γ
λ t)

n

n + 2
γ

λ

(
1− e−

n
n+2

γ
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)−1 −X0

n + 1
(41)

= P0 − γX0
1

1− e−
n

n+2
γ
λ T1

+ γX0
2

n + 2
e−

n
n+2

γ
λ t

1− e−
n

n+2
γ
λ T1

(42)

Only the last term in the expression above is time dependent; its influence decreases with increasing n.
In the limit, we obtain that the expected market price P̄ (t) is constant:

lim
n→∞

P̄ (t) ≡ P0 − γX0
1

1− e−
γ
λ T1

(43)

Proposition A.2. Without any competitors (i.e., nobody is aware of the seller’s intentions), the price
overshoots by λX0/T1. If competitors are present, the price overshooting is reduced to

n

n + 2
γX0

e−
n

n+2
γ
λ T1

1− e−
n

n+2
γ
λ T1

, (44)

which is a decreasing function of the number n of competitors.
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Proof of Proposition A.2. Without any competitors, the optimal strategy for the seller is to liquidate
her asset position linearly: X0(t) = (T1 − t)X0/T1. The market price thus drops to

P̄ (T1−) = P0 − γX0 − λX0/T1. (45)

and price overshooting amounts to λX0/T1.
From Equation 40, we know the structure of P̄ (t) when competitors are present and deduce that the

market price decreases to

P̄ (T1) = P0 − γX0
1

1− e−
n

n+2
γ
λ T1

+ γX0
2

n + 2
e−

n
n+2

γ
λ T1

1− e−
n

n+2
γ
λ T1

. (46)

Thus, the price overshoots with magnitude

P̄ (T1)− P̄ (T1−) =
n

n + 2
γX0

e−
n

n+2
γ
λ T1

1− e−
n

n+2
γ
λ T1

. (47)

The monotonicity follows directly.

B Proofs for propositions on the two stage model

The proofs of the theorems, propositions and corollaries presented in this paper are given in order of
appearance in the main body of text. In order to keep the proofs compact, they sometimes use results
that are independently proven later in this appendix.

Proof of Theorem 2. The actual computations are lengthy; we will therefore only sketch the approach
(more details are available from the authors on request).

Let us first discuss the case n = 1, i.e., the seller is facing only one competitor. By computations
similar to the ones in Proposition A.1, we can express the expected market price P̄ (t) as a linear function
of the seller’s asset position X0 and the competitors asset position X1(T1) = Z1 at the end of stage 1.
Furthermore, by Theorem 1 the competitor’s trading speed ˙X1(t) is linear in X0 and Z1. Therefore we
can then calculate the return for the competitor in the two stages as quadratic functions of X0 and Z1:

ReturnCompetitor = ReturnStage1(X0, Z1) + ReturnStage2(X0, Z1) (48)

Now, we can determine the optimal Z1 by maximizing the quadratic function ReturnCompetitor, i.e.,
by determining the root of its derivative, which is a linear function in X0. Thereby we obtain Equation
12.

Let us turn to the case n ≥ 2, i.e., the seller is facing at least two competitors. We assume that n− 1
competitors acquire optimal asset positions Xi(T1) = Yi for 1 ≤ i ≤ n − 1 and solve for the optimal
asset position Xn(T1) = Zn for the last competitor. Similar to the case n = 1 discussed above, we can
calculate the return for the last competitor as a quadratic function of X0 +

∑n−1
i=1 Yi and Zn:

ReturnCompetitorn = ReturnStage1(X0 +
n−1∑

i=1

Yi, Zn) + ReturnStage2(X0 +
n−1∑

i=1

Yi, Zn) (49)

We can again determine the optimal Zn by maximizing ReturnCompetitorn and obtain a linear function
of X0 +

∑n−1
i=1 Yi:

Zoptimal
n = f(X0 +

n−1∑

i=1

Yi) (50)
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Similarly we obtain the linear equations

Zoptimal
j = f(X0 +

n∑

i=1,i6=j

Yi) (51)

for all 1 ≤ j ≤ n. Since we assumed that (Y1, . . . , Yn) was optimal in the first place, we know that the
optimal Zoptimal

j has to be equal to Yj ; we therefore obtain

Yj = f(X0 +
n∑

i=1,i 6=j

Yi) (52)

for all 1 ≤ j ≤ n. The set of linear equations (52) constitutes a symmetric, non-singular linear problem
of n equations in n variables. Its unique solution therefore has to fulfill Y1 = · · · = Yn and these Yi are a
linear function of X0. By computing this linear function precisely, we obtain the functional form
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Note that we derived the general solution

Xi(T1) = − A2n
2 + A1n + A0

B3n3 + B2n2 + B1n + B0
X0 (54)

under the assumption that n ≥ 2. Equation 54 is indeed not true for n = 1 in an algebraic sense, since
both the numerator and denominator of Equation 54 are 0 in this case. However, the Equation 54 is
analytically consistent with the case n = 1, since it converges for n → 1 against the optimal value of
X1(T1) for n = 1 as given in Equation 12:
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The necessity of two different algebraic expressions for the cases n = 1 and n ≥ 2 therefore can be
considered as mathematical, but not economic difficulties. In particular, they do not reflect an ill-
behavedness of the model in the case n = 1.

In the following proofs, we will need the limits limn→∞Ai and limn→∞Bi. All of these limits exist
and can be established by direct calculations. We obtain:
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γ(T2−T1)
λ

)(
− 1 + e

γT2
λ

)
(62)

(63)

Proof of Proposition 3. We apply Theorem 2 and obtain:

lim
n→∞

n∑

i=1

Xi(T1) = − limn→∞A2

limn→∞B3
X0 (64)
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From the proof of Theorem 2, we know the values of the limits of A2 and B3 and the desired result
follows.

Proof of Corollary 4. Using Proposition 3 and L’Hospitale’s rule, we calculate

lim
λ→∞

lim
n→∞

n∑

i=1

Xi(T1) = lim
λ→∞

e
γ(T2−T1)

λ − 1

e
γT2

λ − 1
=

T2 − T1

T2
(65)

Proof of Corollary 5. We observe that by Theorem 2 all derivatives of Xi(T1) converge locally uni-
formly. Hence, we have

lim
n→∞

d

dγ
Xi(T1) =

d

dγ
lim

n→∞
Xi(T1) (66)

and by computing the derivatives of limn→∞Xi(T1) using Proposition 3 we obtain the first two relations
of the corollary. Similar to the proof of Theorem 8, it can be shown that for large n, Xi(T1) is increasing
in n. This shows the last of the three relations stated in the corollary.

Proof of Proposition 6. By Theorem 1, we know that

lim
n→∞

n∑

i=1

Ẋi(t) =
(

lim
n→∞

na
)

e−
γ
λ t +

(
lim

n→∞
nb1

)
e

γ
λ t (67)

with

lim
n→∞

na =
γ

λ

(
1− e−

γ
λ T1

)−1
(

n∑

i=0

(Xi(T1)−Xi(0))

)
(68)

=
γ

λ

(
1− e−

γ
λ T1

)−1 e
γ
λ (T2−T1) − e

γ
λ T2

e
γ
λ T2 − 1

X0 < 0 (69)

lim
n→∞

nb1 =
γ

λ

(
e

γ
λ T1 − 1

)−1


n(X1(T1)−X1(0))−




n∑

j=0

(Xj(T1)−Xj(0))





 (70)

=
γ

λ

(
e

γ
λ T1 − 1

)−1

X0 > 0. (71)

Hence we obtain

lim
n→∞

n∑

i=1

Ẋi(0) =
(

lim
n→∞

na
)

+
(

lim
n→∞

nb1

)
(72)

=
γ

λ

2e
γ
λ T2 − e

γ
λ (T1+T2) − 1(

e
γ
λ T1 − 1

) (
e

γ
λ T2 − 1

) X0. (73)

The monotonicity of the combined trading rate of the competitors follows from Equation 67 together
with the signs of limn→∞ na and limn→∞ nb1 established in Equations 69 and 71.

Proof of Corollary 7. Expression 17 is positive if and only if

2e
γ
λ T2 − e

γ
λ (T1+T2) − 1 > 0 (74)

⇔ T2

T1
> − ln

(
2− e

γ
λ T1

)
γ
λT1

. (75)
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Proof of Theorem 8. Using Theorems 1 and 2 and Propositions A.1 and 10, we can calculate the
return for the seller in a straightforward way and obtain:

R0 = X0

(
P0 − γX0

A7n
7 + A6n

6 + A5n
5 + A4n

4 + A3n
3 + A2n

2 + A1n + A0

B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0

)
(76)

That is, we can set

G

(
γT1

λ
,
T2

T1
, n

)
:=

A7n
7 + A6n

6 + A5n
5 + A4n

4 + A3n
3 + A2n

2 + A1n + A0

B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0
.

The coefficients Ai and Bi are functions of γT1
λ , T2

T1
and n. They are of a similar structure as the

coefficients derived in the proof of Theorem 2, but even more complex. The calculations and coefficients
are omitted here for brevity (they are available from the authors on request).

The coefficients Ai and Bi converge for n →∞; furthermore, their derivatives dAi

dn and dBi

dn converge
to 0 as n →∞. We compute

lim
n→∞

R0 = lim
n→∞

E(Return for the seller) = X0

(
P0 − γX0

limn→∞A7

limn→∞B7

)
. (77)

Inserting A7 and B7 and computing the limit gives the desired limit.
To prove that limn→∞R0 is increasing for large n, we compute the derivative of the seller’s return R0

with respect to n as

d

dn
R0 = −γX0

Numerator
(B7n7 + B6n6 + B5n5 + B4n4 + B3n3 + B2n2 + B1n + B0)2

(78)

with

Numerator =

(
7A7B7n + 7A7B6 + 6A6B7 +

dA7

dn
B7n

2 +
dA7

dn
B6n

+
dA7

dn
B5 +

dA6

dn
B7n +

dA6

dn
B6 +

dA5

dn
B7

)
n12

−
(

7B7A7n + 7B7A6 + 6B6A7 +
dB7

dn
A7n

2 +
dB7

dn
A6n

+
dB7

dn
A5 +

dB6

dn
A7n +

dB6

dn
A6 +

dB5

dn
A7

)
n12 + o(n11). (79)

For large n, we can omit the o(n11) term; furthermore, we know that all derivatives converge to 0 as
n →∞. We therefore obtain for large n:

Numerator ≈
( (

dA7

dn
B7 − dB7

dn
A7

)
n2

+
(

dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n

+ A7B6 −B7A6

)
n12 (80)
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Inserting the expressions for Ai and Bi, we obtain

lim
n→∞

(
dA7

dn
B7 − dB7

dn
A7

)
n2 = 0 (81)

lim
n→∞

(
dA7

dn
B6 +

dA6

dn
B7 − dB7

dn
A6n− dB6

dn
A7

)
n = 0 (82)

lim
n→∞

(A7B6 −B7A6) = −e
γT1

λ

(
e

γT1
λ − 1

)7(
e

γ(T2−T1)
λ − 1

)5(
e

γT2
λ − 1

)3

< 0. (83)

The derivative of the seller’s return has the opposite sign of the Numerator and is thus positive for large
values of n.

To prove that the seller’s return is decreasing in γT1/λ and increasing in T2/T1 for large n, we proceed
similar to the proof of Corollary 5, observe that the derivatives of R0 converge locally uniformly for n →∞
and obtain the desired relations by inspection of the limit limn→∞R0.

Proof of Proposition 9. The condition

1
2

+
λ

γT1
>

1
1− e−

γ
λ T2

. (84)

is obtained by direct comparison of the returns of sunshine and stealth trading given in Equations 24 and
25. Equation 27 can be derived by passing to the limit T2 →∞.

Proof of Proposition 10. First, we note that by arguments similar to the proof of Proposition A.1 (in
particular Formula (42)), the price during stage 1 (t ∈ [0, T1)) is

P̄ (t) = P0 − γ

(
X0 −

n∑

i=1

Xi(T1)

)
1

1− e−
n

n+2
γ
λ T1

+ γ

(
X0 −

n∑

i=1

Xi(T1)

)
2

n + 2
e−

n
n+2

γ
λ t

1− e−
n

n+2
γ
λ T1

(85)

and the price during stage 2 (t ∈ [T1, T2]) is

P̄ (t) = P0 − γ

(
X0 −

n∑

i=1

Xi(T1)

)
− γ

(
n∑

i=1

Xi(T1)

)
1

1− e−
n−1
n+1

γ
λ (T2−T1)

+ γ

(
n∑

i=1

Xi(T1)

)
2

n + 1
e−

n−1
n+1

γ
λ (t−T1)

1− e−
n−1
n+1

γ
λ (T2−T1)

. (86)

Again, the time-dependent terms vanish as n increases. For the first stage, we obtain the limit

lim
n→∞

P̄ (t) = P0 − γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)
1

1− e− limn→∞ n
n+2

γ
λ T1

+ γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)(
lim

n→∞
2

n + 2

)
e− limn→∞ n

n+2
γ
λ t

1− e− limn→∞ n
n+2

γ
λ T1

(87)

= P0 − γ

(
X0 − e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)
1

1− e−
γ
λ T1

(88)

= P0 − γX0
e

γT2
λ

e
γT2

λ − 1
(89)
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For the second stage, we compute

lim
n→∞

P̄ (t) = P0 − γ

(
X0 − lim

n→∞

n∑

i=1

Xi(T1)

)

− γ

(
lim

n→∞

n∑

i=1

Xi(T1)

)
1

1− e− limn→∞ n−1
n+1

γ
λ (T2−T1)

+ γ

(
lim

n→∞

n∑

i=1

Xi(T1)

)
lim

n→∞
2

n + 1
e− limn→∞ n−1

n+1
γ
λ (t−T1)

1− e− limn→∞ n−1
n+1

γ
λ (T2−T1)

(90)

= P0 − γ

(
X0 − e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)

− γ

(
e

γ(T2−T1)
λ − 1

e
γT2

λ − 1
X0

)
1

1− e−
γ
λ (T2−T1)

(91)

= P0 − γX0
e

γT2
λ

e
γT2

λ − 1
. (92)

Proof of Proposition 11. By Formulas 85 and 86, it is easy to see that within each stage the price
P̄ (t) moves monotonously. Therefore, the only four possible times at which the minimum price can be
achieved are T0, T1−, T1 and T2. It is straightforward to calculate the prices for these four points in time
using Theorem 2 and Formulas 85 and 86, to show that P̄ (T1−) is the minimum of these four values and
that it is lower than P̄ (T2+). Furthermore, it is direct to show that P̄ (T1−) is an increasing function of
the number of competitors n.

The different effect of competitors on price overshooting in plastic and elastic markets is shown by
the examples in Section IV.
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