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José Da Fonseca† Martino Grasselli‡ Florian Ielpo§

First draft: March 4, 2008

This draft: August 25, 2008

Abstract

In this paper we introduce a new criterion in order to measure the variance and
covariance risks in financial markets. In an asset allocation framework with stochas-
tic (co)variances, we consider the possibility to invest also in variance swaps, that
are assets which span the volatility as well as the co-volatility risks. We provide
explicit solutions for the portfolio optimization problem. We then compare the
optimal wealths obtained with and without (co)volatility products leading to the
same expected utility. We use the spread between these wealths as a criterion in
order to measure the impact of (co)variance risk. Using real data on major indexes
and this criterion, we find that the impact of (co)variance risk is huge in the mar-
ket. This is consistent with the fast development of variance and covariance-based
markets.
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1 Introduction

This paper deals with the problem of quantifying and hedging the risks steaming from
the stochasticity of assets variances as well as from their correlations. The very fast
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development of the variance swap market together with other OTC correlation products
(like Correlation Swaps) clearly indicates that variance and covariance risk is indeed
important to portfolio managers, thus leading to a huge demand of hedging such risks.
In the portfolio optimization literature, however, the specific hedging demand1 for the
volatility-covolatility risks is usually small. The following table summarizes the variance
hedging demand (in terms of % on the Merton myopic portfolio) found in the empirical
literature on the major indexes2:

Liu05 CV05 LEW07 BPT06 (declared) BPT06 (correct) DGI08

SP500 Very small 2.13 2.50 10 0.77 0.63

DAX - - - 11 1.01 0.89

For most of the contributions, the hedging demand for stochastic volatility is small3.
Even in the Buraschi et al. (2006) paper, the advocated ratio is around to 10%, which
is however small: the very fast development of the variance swap market clearly indi-
cates that variance and covariance risk is indeed important to portfolio managers. In
this paper we introduce a new criterion to measure the (co)variance risk. We show
that hedging demand-based criteria are misleading when dealing with variance and
covariance risks in financial markets. We measure the (co)variance risk by comparing
the spread between the initial wealths required to obtain the same final utility in an
incomplete and completed market case. According to Leippold et al. (2007), we show
that when completing the market by introducing volatility products (namely variance
swaps), the additional initial wealth can be dramatically large. The additional ex-
pected utility based criterion provides a better measure of covariance risks than the
size of hedging demand: the claim for (co)volatility hedging exceeds by far what has
been found in the previous literature. The use of variance swap makes it possible to

1In the Merton optimal allocation framework with constant investment opportunity set, the optimal

allocation rule is known as the myopic portfolio. When the investment opportunity set is stochastic

due to the presence of stochastic volatility, an additional term is added to the myopic portfolio and is

known as the (co)volatility hedging demand. This additional term is the ratio of the additional term

linked to the stochasticity of the covariances to the original myopic portfolio. It thus represents the

modification percentage of the optimal portfolio when covariance are stochastic.
2The first column is deduced by the paper of Liu (2005) and Liu (2007); the second column from

Chacko and Viceira (2005), the third column contains the results presented in Leippold et al. (2007)

(the results presented are the one obtained for the 1996-2007 sample); the fourth column is taken from

Buraschi et al. (2006); the fifth column contains the results of Buraschi et al. (2006) when we recompute

their solution using the estimates and dataset presented in their paper, along with their model; the

sixth column contains the values corresponding to the WASC model adopted in our paper. We detail

in the empirical Section the computations of the table.
3The only exception is the recent paper of Buraschi et al. (2006). However, when recomputing their

solutions using their estimates, we obtain a totally different - but consistent with past literature - result.

There seems to be an empirical mistake in their paper in implementing their solution. A Matlab code

providing their solution is available on first author’s webpage (and is available upon request). In the

appendix, we provide the numerical values taken from Buraschi et al. (2006) used to recompute their

solution and the corrected solution.
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discuss the (co)variance risk, since this asset is specifically devoted to (co)volatility risk
hedging. What is more, this criterion has a way better financial interpretation than
the usual hedging demand: we discuss this point extensively in the paper.

We consider an inter-temporal portfolio problem within the Wishart Affine Stochastic
Correlation (WASC hereafter) model introduced by Da Fonseca et al. (2007b): in our
multi-dimensional model, asset’s volatilities evolve stochastically as well as their co-
volatilities, following a Wishart process recently introduced in finance by Gourieroux
and Sufana (2004) and extended by Buraschi et al. (2006). This affine model can be re-
garded as a multivariate version of the Heston (1993) one: in fact, the volatility matrix
is assumed to evolve according to the Wishart dynamics (mathematically developed
by Bru (1991)), which represents the matrix analogue of the mean reverting square
root process. In addition to the Heston model, it allows for a stochastic conditional
correlation, which makes it a very promising process for financial applications.

When dealing with a stochastic (co-)volatility model, it is well known that an intertem-
poral hedging demand arises in the Merton-like optimal strategy, in order to take into
account the fluctuations of the relevant stochastic factors. In the stochastic volatility
literature, this phenomenon has been investigated from both theoretical and empirical
point of view. Chacko and Viceira (2005) are amongst of the first to study empirically
the optimal portfolio problem in a Heston stochastic volatility (incomplete) market
setting. In an infinite horizon economy, they considered a recursive utility criterion.
They found that the intertemporal hedging demand for reasonable values of the risk
aversion parameter is small (about 2% of the Merton myopic portfolio). Liu (2005) and
Liu (2007) considers constant relative risk aversion (CRRA) preferences and he finds
similar results.

In a multi-asset setting, Buraschi et al. (2006) extended the analysis of Liu (2005) and
Liu (2007) and Chacko and Viceira (2005) to the case where both volatilities and cor-
relation are stochastic. They enhanced the model of Gourieroux and Sufana (2004) by
introducing a special correlation structure among asset returns and their (co)volatilities.
They obtained a model that is nested within the Wishart Affine Stochastic Correla-
tion model independently introduced in Da Fonseca et al. (2007b) in a option pricing
framework. The main message of Buraschi et al. (2006) is that the intertemporal hedg-
ing demand coming from the presence of a stochastic correlation is a ”non-negligible
fraction of the myopic portfolio, which often dominates the pure volatility hedging de-
mand” (around 15 %). They conclude with the fact that correlation risk is high when
compared to volatility risk.

However, it is well known that variance risk and hedging demand are different con-
cepts. This is intuitive. For example, in the Heston model framework, if the volatility
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is independent of the asset returns, the hedging demand is known to be equal to zero.
Nevertheless, in such a framework, there is obviously a variance risk that should be
hedged some way. The zero-hedging demand only reflects the fact that variance risk
cannot be hedged solely by trading the underlying (see e.g. Hull (2008)). The usual
way to hedge such risk is to introduce assets that are known to depend on the additional
risk factors. In a stochastic volatility framework, the natural choice would consist in
Variance Swaps, since they are (linear) forward contracts on the realized variance, thus
they can span the uncertainty coming from the stochastic volatility. Leippold et al.
(2007) follow this approach in the Heston (1993) framework. They quantify the vari-
ance risk by considering the additional utility coming from the introduction of Variance
Swaps in the market. They compare the optimal allocations strategies in both complete
and incomplete market and find that they can be drastically different in the two cases.
In particular, in the complete market the optimal demand in the risky asset turns out
to be a constant proportion of the wealth as in the usual Merton-like solution. What
is more, the additional utility coming from the introduction of variance swaps can be
very large even when intertemporal hedging demand is small, thus confirming that the
latter cannot be considered as a measure for quantifying the variance risk.

In the first part of our paper we extend the idea of Leippold et al. (2007) to the case
where variances and correlations are stochastic. We consider a market in which an
agent endowed with a CRRA utility over terminal wealth holds a portfolio made of
risky assets and variance swaps. The latter assets span the uncertainty coming from
the stochastic variance-covariance matrix of the assets returns. Notice that in our
framework Variance Swaps are also correlation products since they involve all the ele-
ments of the variance-covariance matrix. In the complete and incomplete market cases
we find the optimal demand in risky assets and in the variance swaps. We then pro-
pose to test empirically the solutions, using a real dataset on S&P500 and DAX. Using
both the underlying and variance swaps, we estimate the WASC model under both
the historical and pricing measure. The empirical results unfold as follows: first, in
the incomplete market case, we recover results similar to those found in the previously
mentioned literature. Second, in the complete market case, we find a huge change in
both optimal allocation strategy and associated expected utility. Roughly speaking,
our results indicate that without variance swaps, the agent needs about 250 times his
initial wealth in order to obtain the same expected utility level as in the complete mar-
ket case, thus indicating a significant (co)variance risk in the market.

The paper is organized as follow. In Section 2, we present the stochastic correlation
model used as a framework for this paper. In Section 3, we present the optimal portfolio
allocation problem in both incomplete and complete market case. In Section 4 we
review the estimation methodology along with the empirical results obtained in the
paper. Section 5 concludes, while we gathered the technical proofs in the Appendix.
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2 The model

The model we adopt for describing the economy is the Wishart Affine Stochastic Corre-
lation (WASC hereafter) model introduced in Da Fonseca et al. (2007b). In this multi-
asset market returns’s volatilities evolve stochastically as well as their co-volatilities. In
fact, quadratic covariations evolve as additional stochastic factors. Moreover, according
to Da Fonseca et al. (2007b), in order to be consistent with the APT Factor Model,
the dynamics of all variance-covariance factors are supposed to be a linear-affine. In
this way we obtain the genuine multi-dimensional version of the the celebrated Heston
(1993) model, where the square root variance process is replaced by a (matrix valued)
Wishart process investigated by Bru (1991) and introduced in finance by Gourieroux
and Sufana (2004) in a multi-asset framework. Let us briefly recall the main assump-
tions underlying the WASC model:

Assumption 2.1. The continuous time diffusive Factor Model is considered to be a
linear-affine stochastic factor model with respect to assets’ returns Y ∗it and variance-
covariance factors Σkl.

In line with Da Fonseca et al. (2007b), in this model (observed) returns and their
variances can be explained as linear combinations of fundamental risk factors (including
covariance risks) whose evolution is still a linear-affine process.
As described in Gourieroux and Sufana (2004), it is possible to describe the stochastic
evolution of a generic stochastic positive definite variance-covariance matrix within a
linear-affine model with a non linear (cone) state space and Grasselli and Tebaldi (2008)
state sufficient parametric conditions in order to obtain an admissible process preserving
the cone state space formed by the set of positive definite symmetric matrices. For this
reason we retain the Gourieroux and Sufana (2004) specification of the variance process:

Assumption 2.2. The stochastic covariance matrix follows a Wishart process.

The instantaneous variance covariance of the risky assets is a matrix Σt which is as-
sumed to satisfy the following dynamics:

dΣt =
(

ΩΩ> +MΣt + ΣtM
>
)
dt+

√
ΣtdWtQ+Q> (dWt)

>√Σt, (1)

where ΩΩ> = βQ>Q, β > n− 1 and Ω is invertible.

Equation (1) characterizes the Wishart process introduced by Bru (1991), see also
Da Fonseca et al. (2007a) for some financial interpretation of the parameters. Note
that the first condition requires a proportionality relation between ΩΩ> and Q>Q

and provides a strong reduction on the number of free parameters in the model. The
proportionality (Gindikin) parameter β is constrained to be larger than n − 1. When
n = 1 we recover the standard condition granting the positivity of the process for the
square-root diffusion model. In full analogy with the square-root diffusion process, the
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term ΩΩ> is related to the expected long-term variance-covariance matrix Σ∞ through
the solution to the following linear (Liapunov) equation:

−ΩΩ> = MΣ∞ + Σ∞M>.

In a one dimensional model the matrix M would collapse to the mean reversion velocity;
in the multivariate situation the matrix M is still responsible for the mean reversion
effects, however in case of a non diagonal M it will also generate an effective dynamic
interaction between different asset volatilities. Similarly the matrix Q is the multivari-
ate counterpart of the volatility of volatility parameter in the Heston model.

Finally we consider the following extension of all previously known (affine) models:

Assumption 2.3. Brownian motions of the assets’ returns and those driving their
instantaneous covariance matrix are linearly correlated.

This extension is motivated by the well known fact that within the Heston (1993) model
it is possible to approximately reproduce observed skews only introducing a non zero
correlation between the innovation of returns and the innovation driving variance. In
the same way it is reasonable to expect that these correlations are needed in order to
fully capture effects of dynamic stochastic correlations on multiple asset options.
In formulas, we consider a n-dimensional risky asset St whose dynamics under the
historical probability measure P are given by

dSt = diag[St]
[
µt(ω)dt+

√
ΣtdZt

]
, (2)

where Zt ∈ Rn is a vector Brownian motion.

Under the above assumptions, Da Fonseca et al. (2007b) showed that the correlation
matrix among the Brownian motions has a very special and parsimonious form:

Proposition 2.1. (Da Fonseca et al. (2007b)) Assumption 2.3 and Assumption 2.2
imply that

dZt =
√

1− ρ>ρdBt + dWtρ.

where ρ ∈ [−1, 1]n and ρ>ρ ≤ 1.

Remark 2.1. The market model introduced by Gourieroux and Sufana (2004) cor-
responds to the case ρ = 0, for which the Brownian motions of assets’ returns are
assumed to be independent of the ones driving the volatility matrix, thus implying a
flat skew effect on the implied volatility structure of vanilla options as discussed in
Da Fonseca et al. (2007b). The model of Buraschi et al. (2006) corresponds to the case
ρ = (1, 0)>, that is the Brownian motion driving the asstes’ returns is generated by the
(matrix) Brownian motion of the volatility process, so that their model can be viewed
as the multi-dimensional version of the Heston-Nandi model, in which there is a perfect
correlation between these noises.
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2.1 The risk premia

The WASC model naturally accommodates a flexible parametrization of positive stochas-
tic risk premia depending also on covariation levels. Following Gourieroux and Sufana
(2004), in line of principle on should consider the general form for the risk premium of
the risky assets, which is assumed to be a linear-affine combination of the risk factors.
From the Riesz representation theorem of linear functionals, this implies the following
general specification:

µkt = r + Tr[Θk
tΣt], k = 1, ..., n, (3)

for some deterministic matrices Θk
t ∈Mn. However, in order to grant the linear-affinity

of the model (which implies the analytical tractability) under both the historical and
risk neutral probability measures, some additional constraints on the functional form
of the risk premia should be introduced. Technically speaking, the Girsanov change of
drift for the Brownian motion Z inherits some restrictions on the transforms for both
B and W . Such constraints are in general quite difficult to manage and we will do not
investigate here the (delicate) question about the most general expression for the risk
premium preserving the linear-affinity of the model: this is why instead of assuming
the general form as in (3), we adopt the so called completely affine parametrization (in
the terminology of Duffee (2002)) for the market price of risk as in Da Fonseca et al.
(2007b), thus leading to a price deflator whose dynamic is given by the following SDE:

dHt

Ht
= −rdt+ Tr

[
Λ>
√

ΣtdWt

]
− l>

√
ΣtdBt, (4)

where Λ ∈ Mn×n (R), l ∈ Rn. In other words, the Girsanov changes of drifts for the
Brownian motions W,B are parametrized by a matrix Λ and a vector l ∈ Rn such that

dWQ
t = dWt −

√
ΣtΛdt, (5)

dBQ
t = dBt +

√
Σtldt, (6)

where WQ
t ∈ Mn (resp. BQ

t ) is a matrix (resp. vector) Brownian motion under the
risk neutral measure Q. This means that the SDE describing the WASC model un-
der the risk neutral measure Q is related to the original P-process by the following
reparametrization:

MQ = M +Q>Λ>, (7)

so that the risk premium associated to the risky assets is given by (see also Da Fonseca
et al. (2007b))

Σtλ0 = Σt

(√
1− ρ>ρl − Λρ

)
. (8)

2.2 Variance and Covariance Swaps

In a Heston-like framework, Leippold et al. (2007) introduced the possibility to invest
wealth into a Variance Swap, that is a linear contract on the realized variance which is

7



perfectly correlated with the Brownian motion driving the variance process. Leippold
et al. (2007) showed that the optimal investment strategy with and without a variance
swap changes dramatically, even if the intertemporal hedging component in the optimal
demand in the risky assets remains small in absolute value (according to Chacko and
Viceira 2005 and Liu 2005). In fact, the size of the hedging demand indicates what can
be done by just investing into the risky asset, but it tells very little about the size of the
variance risk. For example, if the volatility process is independent of the asset’s noise,
it is well known that the hedging demand is equal to zero (then the optimal strategy
turns out to be the classic Merton’s one, see e.g. Example 7.4 p.305 in Karatzas and
Shreve (1998) for the very general result), but of course the variance risk could be high
and it should be computed in another way. In order to quantify the Variance Risk, we
suggest to compute the additional utility coming from the introduction of the variance
swaps. Another strategy, followed by Leippold et al. (2007), consists in changing the
RRA parameter in order to obtain similar hedge ratios when completing the market
with the variance swap.

Following the idea of Leippold et al. (2007), we introduce some non redundant linear
contracts which span the uncertainty coming from the stochastic variance-covariance
matrix.

The first class of linear contracts consists in Variance Swaps, which are forward con-
tracts on the realized variance. As commonly used in practice, the variance swaps
price stands for the strike price of the corresponding forward contract on the realized
variance. The variance swap rate on the i− th asset with maturity T at time t is given
by:

V Sii(t, T ) =
1

T − t
EQ
t

[∫ T

t
Σii
udu

]
,

where Σii
u denotes the diagonal element of the variance-covariance matrix Σ and is as-

sociated to the (instantaneous) variance of the i−th asset.

Since in the WASC model not only variances but also correlations are stochastic, we
will consider a second class of derivatives, namely Covariance Swaps, in order to span
the uncertainty coming from the stochastic correlations. In analogy with the variance
swap, the Covariance Swap rate between assets Si and Sj is given by

V Sij(t, T ) =
1

T − t
EQ
t

[∫ T

t
Σij
u du

]
.

Contrarily to Variance Swaps, Covariance Swap rates are not quoted in the market.
However, Carr and Corso (2001) show how to construct a synthetic Covariance Swap
by using the volatility products quoted in the market, such that pricing and hedging
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of (synthetic) Covariance Swaps can be performed efficiently. Since we work under the
historical measure, we also need to estimate the risk premia of Covariance Swaps: in
this case we will perform a Kalman filter estimation on the available variance swap
rates in order to estimate also the covariance swaps’ risk premia, in line with Leippold
et al. (2007).

Remark 2.2. Estimating Covariance Swaps’ risk premia using Variance Swaps prices
could be quite surprising at a first attempt, but it is important to notice that in the
WASC model Variance Swaps are correlation products since their prices involve all the
information of the volatility-covolatility matrix (that is also the off-diagonal elements
of the matrix Σ). In this sense it is quite natural to estimate correlation products by
using (co-)volatility products like Variance Swaps, and this also explains the title of our
paper.

We denote with V S(t, T ) the matrix (co-)variance swap rate whose elements are V Sij(t, T ).
Since variance and covariance swaps are linear functions of the variance matrix Σt, we
can easily deduce the (co-)variance swap rate by solving a linear ODE (which is much
simpler than the procedure based on the characteristic function proposed by Leippold
et al. (2007)). As shown in the Appendix, the (co-)variance swap rates are given by:

V Sij(t, T ) =
1

T − t
Tr
[
Σt

∫ T

t
Liju du

]
+

1
T − t

∫ T

t
Tr
[
eije

(u−t)MQ
A21du

]
,

where the deterministic matrix L is given by

Liju = e(u−t)MQ>
eije

(u−t)MQ
, (9)

(eij denotes the ij−element of the canonical basis of the set of square matrices) while
the deterministic matrix A21 is provided in the Appendix.

In conclusion, the variance and covariance swap rates (as well as their dynamics) are
available in closed form in the Wishart specification for the variance-covariance matrix.

3 The optimal allocation problem

3.1 The portfolio problem in the incomplete market

In the first part of our analysis we consider the case where the (co-)variance swaps
are not available in the market, so that the agent invests his initial wealth X0 into
the (incomplete) financial market consisting only in the risky assets S1

t , .., S
n
t . The

dynamics of the (self financing) wealth process is given by

dXt = Xt

(
r + π>t Σtλ0

)
dt+Xtπ

>
t

√
ΣtdZt. (10)
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We consider an agent, endowed with a CRRA utility of terminal wealth with RRA
coefficient 1 − γ greater than zero, who wants to find the optimal allocation strategy
(πt) which solves the following problem

J(0, X0,Σ0) = sup
π

E
[
Xγ
T

γ

]
, (11)

where the investment horizon T is assumed to be fixed and the set of admissible strate-
gies (πt) is defined in order to grant the regularity of the wealth process and some
additional integrability involving the utility function (see e.g. He and Pearson 1991 for
technical details).

Following the duality-based argument of He and Pearson (1991), the optimization prob-
lem splits into two steps: the first step is the difficult one and consists in finding the
optimal value function, while the second step is quite standard and consists in finding
the optimal investment strategy by a martingale representation argument.
The following proposition represents the solution of the first step procedure:

Proposition 3.1. If the dynamic of the covariance matrix is given by (1) then the
value function of the problem (11) is given by:

J(0, X0,Σ0) =
Xγ

0

γ
e(1−γ)Tr[A(0,T )Σ0]+(1−γ)B(0,T ) (12)

where the deterministic matrix A(t, T ) (resp. function B(t, T )) is explicitly given by
(42) (resp. by (43)) in the Appendix.

Now by a standard argument we can find the optimal investment strategy: this is given
by the following proposition.

Proposition 3.2. The optimal portfolio solution associated to the problem (11) is given
by

πt =
λ0

1− γ
+ 2AQ>ρ, (13)

where A is explicitly given by (42) in the Appendix.

Remark 3.1. Taking n = 2 and ρ = (1, 0)> we obtain the solution found in Buraschi
et al. (2006)

π =
1

1− γ

(
λ1

0

λ2
0

)
+ 2

(
A11Q11 +A12Q12

A21Q11 +A22Q12

)
,

Remark 3.2. In the 2−dimensional case with ρ>ρ < 1 we obtain the general solution

π∗t =
1

1− γ

((
λ1

0

λ2
0

)
−
√

1− ρ2
1 − ρ2

2

(
l1

l2

))

+2

(
A11 (Q11ρ1 +Q21ρ2) +A12 (Q12ρ1 +Q22ρ2)
A21 (Q11ρ1 +Q21ρ2) +A22 (Q12ρ1 +Q22ρ2)

)
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Remark 3.3. The optimal strategy in the incomplete market can also be deduced from
the solution of the complete market case by constraining the optimal strategy to assign a
zero proportion of wealth in the (co)variance swaps: this is the primal approach followed
by Leippold et al. (2007).

In our empirical analysis we are going to show that, contrarily to what stated in
Buraschi et al. (2006), the size of the intertemporal hedging demand is small in abso-
lute value. In line of principle it may happen that the hedging demand is small due to
some compensating effects on the sign of the variance-covariance components. Then,
in the following proposition we decompose the hedging demand into pure volatility and
co-volatility effects as in Buraschi et al. (2006), in order to show if the sizes of all these
effects are indeed small. For simplicity and without loss of generality we illustrate the
results in the two assets case.

Proposition 3.3. The optimal trading strategy due to the stochastic volatility can be
decomposed in a correlation hedging component πcorr, covariation hedging component
πcov and a volatility hedging component πvol. Within the WASC model these quantities
for the first asset are given by

π1
vol = 2A11(Q>ρ)1 (14)

π1
covol = 2A12ρ̄

√
Σ22

Σ11
(Q>ρ)1 (15)

π1
corr = 2A12

(
−ρ̄
√

Σ22

Σ11
(Q>ρ)1 + (Q>ρ)2

)
(16)

and for the second asset

π2
vol = 2A22(Q>ρ)2 (17)

π2
covol = 2A12ρ̄

√
Σ11

Σ22
(Q>ρ)2 (18)

π2
corr = 2A12

(
−ρ̄
√

Σ11

Σ22
(Q>ρ)2 + (Q>ρ)1

)
(19)

where (Q>ρ)i stands for the ith element of the vector Q>ρ and ρ̄ = Σ12
√

Σ11Σ22
.

3.2 The portfolio problem in the completed market

Now we consider the problem of an agent who invests an initial wealth X0 into a the
financial market consisting in the n risky assets S1

t , .., S
n
t but also in the n(n+1)/2 (co-

)variance swaps described in the Section 2. Let us denote by (πt) =
(
π1
t , ..., π

n
t

)>
the proportion of wealth Xt invested into the risky assets S1

t , .., S
n
t , and by Πt ∈

Mn the fraction of wealth invested as notional for the (co-)variance swap contract

11



(V S(t, T )−K), where at each time the agent initiates new variance swap contracts
with the delivery price K set to be K = V S(t, T ), so that the variance swap contract
has zero initial value. This implies that under the risk neutral probability measure Q
the dynamics of the variance swap contract is a martingale:

dV S(t, T ) = 0dt+
1

T − t

∫ T

t
e(u−t)MQ

(√
Σt

(
dWt −

√
ΣtΛdt

)
Q

+ Q>
(
dWt −

√
ΣtΛdt

)>√
Σt

)
e(u−t)MQ>

du.

Remark 3.4. The dynamics of the matrix contract V S(t, T ) is symmetric. This sym-
metry can lead to some misleading interpretation of market incompleteness in our
framework. In fact, the uncertainty induced by the (symmetric) stochastic volatility
matrix Σt is strictly smaller than the one generated by the n2 Brownian motions W , so
that the n(n+1)/2 (co-)variance swaps are sufficient to complete the market. This is a
wellknown feature of the symmetric matrix representation of the Wishart process, which
carries less information than the whole filtration generated by the sources of uncertainty
(see Gourieroux and Sufana (2004), page 17). Roughly speaking, we improperly call
market completeness the possibility to perfectly hedge any derivative contract written
on the traded assets. In other words, we will not consider the (mathematically inter-
esting) problem of pricing and hedging a contingent claim whose payoff may depend on
each component of the sources of uncertainty W,B (see the paper of Davis and Obloj
(2007) for some recent results of this approach in a Heston framework).

By using the previous dynamics, the (self-financing) wealth process evolves according
to the following SDE (see also Leippold et al. (2007)):

dXπ,Π
t

Xπ,Π
t

= π>t

(
Σtλ0dt+

√
ΣtdZt

)
+ Tr[ΠtdV S(t, T )].

We consider the same optimization problem as in the incomplete case, i.e.:

J(0, X0,Σ0) = sup
π,Π

E


(
Xπ,Π
T

)γ
γ

 , (20)

where the set of admissible strategies (π∗,Π∗) is defined in the usual way in order to
insure the existence of a strong solution to the SDE satisfied by the wealth process.
By the same argument as in the incomplete market case we get the following result:

Proposition 3.4. If the dynamic of the covariance matrix is given by (1) then the
value function of problem (20) in the completed market is given by:

J(0, X0,Σ0) =
Xγ

0

γ
e(1−γ)Tr[A(0,T )Σ0]+(1−γ)B(0,T ) (21)

where the deterministic matrix A(t, T ) (resp. function B(t, T )) is explicitly given by
(47) (resp. by (48)) in the Appendix.
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Proposition 3.5. Suppose that 1 − ρ>ρ 6= 0. If the agent can invest in a complete
market consisting in the risky assets and the (co-)variance swaps, then the optimal
proportion of wealth invested into the risky assets is given by

πt = − 1
1− ρ>ρ

∂XJ

Xt∂2
XXJ

(λ0 + Λρ) ,

=
1

1− ρ>ρ
1

1− γ
(λ0 + Λρ) (22)

while the optimal fractions of wealth invested as notional in (co-)variance swaps are
implicitely given by

1
τ

∫ τ

0
esM

Q>
Πte

sMQ
ds =

1
4(γ − 1)

(
Λ
(
Q−1

)> +
(
Q−1

)
Λ>
)

+
1

4(γ − 1)

(
lρ>√

1− ρ>ρ
(
Q−1

)> +Q−1 ρl>√
1− ρ>ρ

)
+A,

where A = A(t, T ) is given by (47) in the Appendix.

Our result is analogous to the one obtained by Leippold et al. (2007) in the Heston
framework. There is no intertemporal hedging demand for the risky assets in the pres-
ence of (co-)variance swap contracts: the optimal strategy is just the classic constant
proportion solution found by Merton (1971). However, as we shall see in the next sec-
tion, the proportion invested into the risky assets changes dramatically with respect
to the incomplete market case. This is basically due to two reasons. The first one is
linked to the high risk premium of (co)volatility risk Λ estimated in the market, while
the second relies on leverages effects due to the presence of (co)volatility swaps.

Remark 3.5. In Buraschi et al. (2006) ρ>ρ = 1, so that they would find a degenerate
trading strategy in the presence of variance swap contracts: here the presence of a
Brownian motion orthogonal to the volatility noise is crucial. In other words, in the
model of Buraschi et al. (2006), the presence in the market of the (co-)variance swaps
makes the risky assets redundant.

4 Empirical results

In this section we present our empirical results when using the WASC model on a real
dataset. We first briefly review the methodology developed to estimate the WASC
model under the historical measure. We will basically follow Da Fonseca et al. (2007a)
who estimated the WASC model using a C-GMM based procedure. Then, we focus
on the estimation of the volatility risk premium, that is the risk premia associated to
the matrix Wishart process. Using a Kalman filter based methodology as presented in
Duffee and Stanton (2004) on a database of variance swaps (see also Leippold et al.
(2007)) we estimate the variance risk premia, thus identifying the WASC model under
both the historical probability measure and the risk neutral one.

13



4.1 Estimation of the WASC model under P

We briefly recall the main results of Da Fonseca et al. (2007a) on the estimation of
the WASC under the historical probability. Based on the work of Chacko and Viceira
(2005), we estimate the WASC model using moment conditions based on the empirical
characteristic function. Methodologies of this kind are known as spectral generalized
method of moments. This framework is particularly adapted to the WASC since its
characteristic function is known in a closed form expression. Furthermore, using a con-
tinuum of moments as in Carrasco et al. (2007) increases the efficiency of the estimators
when compared to those obtained in Chacko and Viceira (2005). The dataset used in
the estimation consists in SP500 and DAX quotes ranging from January 2nd 1990 to
June 30th 2007. We found that when the parameters are conveniently aggregated, the
WASC model displays a behavior comparable to the one of the Heston model. What is
more the estimated WASC models reproduce stylized effects such as contagion effects
that can not be handled within the Heston model. Table 1 provides the parameter esti-
mates for the WASC model with our dataset. We refer to Da Fonseca et al. (2007a) for
further details on the methodology and on the financial interpretation of the estimated
parameters.

4.2 Estimation of the volatility risk premium

We turn our attention to the estimation of the variance risk premium. We use a
database of variance swaps quotes on the indexes SP500, DAX ranging from June 21st
2006 to June 23rd 2007. Each day we have a term structure of variance swaps with
maturities ranging from 1 month to 21 months, which makes 21 contracts.

The risk neutral dynamics of the (co-)variance matrix is:

dΣt =
(

ΩΩ> + (M +Q>Λ>)Σt + Σt(M +Q>Λ>)>
)
dt+

√
ΣtdW

Q
t Q+Q>

(
dWQ

t

)>√
Σt.

Pricing (co)variance swaps contracts involves the computation of

1
τ

∫ t+τ

t
EQ
t [Σu]du. (23)

Using the dynamics of the Wishart process and denoting by Xu = EQ
t [Σu], we deduce

that
dXu

du
= ΩΩ> + (M +Q>Λ>)Xu +Xu(M +Q>Λ>)>. (24)

In order to compute the (co)-variance swaps value it is more convenient to rewrite the
dynamics of equation (24) in a vector form. Denoting X̄u = V ec(Xu) = (X11

u , X
21
u , . . . , X

nn
u )>

and B̄ = V ec(ΩΩ>), we are lead to the system:

dX̄u

du
= ĀX̄u + B̄, (25)
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with Ā = I ⊗ (M +Q>Λ>) + (M +Q>Λ>)⊗ I4. Simple computations give

1
τ

∫ t+τ

t
X̄udu =

Ā−1

τ

[
eτĀ − I

]
X̄t − Ā−1B̄ +

1
τ

[
eτĀ − I

]
(Ā−1)2B̄. (26)

As a consequence the (co)-variance swap contracts are affine transform of the Wishart
process and can be written as

V S(t, T ) = ÃX̄t + B̃, (27)

with Ã and B̃ identified from equation (26). We observe an affine transform of the la-
tent factor Xt which leads to estimation strategies similar to those currently developed
for affine term structure models. Since we have a factor model for the (co)-variance
swaps contracts, we can duplicate the (co)variance swap contract using variance swaps
contracts with different maturities. From the estimation point of view, we chose the (lin-
earized) Kalman filtering estimation strategy as in Duffee and Stanton (2004) and Leip-
pold et al. (2007). In order to fit within usual notations we rewrite the dynamics of the
Wishart under the historical probability in vector form. Denoting Zt = (Σ11

t ,Σ
12
t ,Σ

22
t )>

it is straightforward to obtain

dZt = (LZt +K)dt+ Θ(Zt)dW̄t, (28)

where W̄t = (W 11
t ,W 12

t ,W 21
t ,W 22

t )> and K,L,Θ(Z) suitably defined from the WASC
dynamics. Using Kalman filtering theory as presented in Brandt and He (2006) and
Duffee and Stanton (2004) from the system (27) and (28) we estimate the market
price of risk Λ of the volatility. Table 2 presents the estimates of the market price
of volatility risk. Table 3 describes the descriptive statistics around the dataset, while
Table 4 provides descriptive statistics about the obtained variance swaps pricing errors.

4.3 Analysis of the estimation results

In this section, we review the main estimation results of the paper. We first discuss
the empirical properties of the dataset and of the estimated variance swaps dynamics.
Then we turn our attention toward the analysis of the hedging policy yielded by the
estimated WASC model for both the complete and incomplete cases.

Summary statistics for the variance swap dataset are provided in Table 4. This dataset
presents the usual features of variance time series, including asymmetric and leptokur-
tic distributions and a high degree of autocorrelation. The variance swap time series
are presented in the Figures 2 for the DAX and 1 for the SP500. Most of the time,
the term structure of variance swaps is increasing, but for a very special period of the
dataset: around May 15th 2007, the launching of take profits in both the DAX and
SP500 markets led to a drop in these indexes followed by an increase in the short term

4⊗ stands for the Kronecker product.
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volatility due to well known leverage effects.

The estimation results for the variance risk premia is provided in Table 2. The matrix
risk correction presents values that are close in terms of sign and magnitude to those
obtained in the univariate case by Leippold et al. (2007). The risk neutral matrix drift
is definite negative, as expected. The Table 4 presents descriptive statistics around
the pricing errors obtained with the estimated WASC model. Globally, the pricing
errors are below one volatility percentage point for the whole time series studied. The
pricing errors for the DAX are presented in Figure 4 and for the SP500 in Figure 3. As
expected, the pricing errors get higher in may 2007, due to the aforementioned take-
profit event in the market. The quality of the variance swap pricing errors can also be
viewed through the R2 measure: the obtained figures are very close to the robust ones
obtained in Leippold et al. (2007).

4.4 Analysis of optimal strategies in incomplete and completed mar-

ket

In this subsection, we investigate the behavior of the optimal allocation strategies in
both the incomplete and completed markets cases.

4.4.1 The optimal strategy in the incomplete market

When implementing the optimal solution for the WASC model using our dataset, we
find that the size of the intertemporal hedging demand is indeed small (about 0.63%
and 0.89%), in accordance to Chacko and Viceira (2005) and Liu (2005). This is in
contrast with the result of Buraschi et al. (2006), who declared a size of about 10% and
11%. However, when implementing their strategy (using their model, estimates and
dataset) we found a completely different result (around 0.7% - 1.01%): the re-computed
results are in line with the one obtained in literature and in the WASC model. Thus,
there seems to be a numerical mistake in their paper. Table 5 summarizes the aggregate
hedging demands in (declared and correct) Buraschi et al. (2006) case as well as in our
WASC case.

The main message in Buraschi et al. (2006) was that ”the optimal demand to hedge
correlation risk is a non-negligible fraction of the myopic portfolio, which often domi-
nates the pure volatility hedging demand” (see panel B of table III in Buraschi et al.
(2006)). When recomputing their solution, the domination of the correlation hedge
vanishes.

The Table 9 presents the loadings for both stocks in the optimal portfolio computed
in the incomplete market case: the sign is in line with the classic Merton solution,
with two long positions. What is more, when increasing the volatility of the matrix
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covariance process, the hedging demand does not exhibit a strong sensitivity. This is a
serious problem when dealing with risk measures.

4.4.2 The optimal strategy in the completed market

In the completed market, the hedging strategy is significantly different. The size of the
hedging ratios on the stocks are large when compared with the incomplete market case.
What is more, they mainly depend on the market price of volatility risk. Furthermore,
the position on the stocks are of opposite sign, even though the market price of risk
are both positive. This is basically due to the possibility of leverage effects. In fact,
with respect to the (co)variance swaps we get similar conclusions: we end up with large
hedging ratios in both assets and covariance swaps (in absolute value term) thus show-
ing strong leverage effects. Our results are consistent with those obtained by Leippold
et al. (2007).

A sensivity analysis with respect to volatility of volatility (the matrix Q) reported in
Table 10 shows the strong dependence of the hedging ratios on this parameter. This
should be compared with the incomplete market case where hedging ratios are only
slightly altered. Thus the (co)variance risk can not be analyzed within the incomplete
market, or more precisely a market of stocks only.

This confirms, if necessary, that (co)variance risk should be handled with assets de-
pending on volatility. Obviously, the (co)variance swaps suit perfectly that objective.
Any vanilla options would also be a convenient choice (see e.g. Hull (2008)), unlike
stocks. The choice of variance swap obviously relies on the linearity of the payoff func-
tion.

Clearly, we need a new measure for (co)variance risk. We propose to set the problem
in terms of additional utility: we compare the required initial endowment to reach the
same expected utility in the completed and incomplete market cases. We associate the
spread between these amount of wealth to the size of (co)variance risk. This criterion
is related to the utility-based indifference pricing, the main differences being that we
consider variance swap prices as given and our problem is set in a dynamic perspective
since we allow for trading in this asset. Table 10 confirms that our risk measure is a
suitable candidate for representing the (co)variance risk in financial markets. In fact,
this measure is highly sensible to risk parameters, like volatility of volatility. From a
quantitative point of view, our results indicate that in the incomplete market case, this
initial wealth should be equal to about 250 times the corresponding endowment when
variance swaps are available.
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5 Conclusion

In this paper, we propose a new (co)variance risk measure obtained when completing the
stock market with non-redundant volatility products, i.e. variance swaps. We provide
explicit formulas for the optimal portfolio in both the incomplete and completed market
cases in a multivariate stochastic correlation framework. Once the model is estimated
using the Kalman filter, an investigation of the empirical results obtained with SP500
and DAX clearly validates our approach.

6 Appendix

6.1 (Co)Variance Swaps rates

Using the dynamics of the Wishart process and denoting by Xu = EQ
t [Σu], we deduce

that
dXu

du
= ΩΩ> +MQXu +XuM

Q>.

Set Xu = Z−1
u Yu thus getting

d

du

(
Y Z

)
=
(
Y Z

)( MQ> 0
ΩΩ> −MQ

)

(
Yu Zu

)
=
(
Yt Zt

)
exp(u− t)

(
MQ> 0
ΩΩ> −MQ

)

=
(
Yt Zt

)( A11 A12

A21 A22

)

=
(
Yt Zt

)( e(u−t)MQ>
0

A21 e−(u−t)MQ

)
,

so that
Xu = e(u−t)MQ

Xte
(u−t)MQ>

+ e(u−t)MQ
A21, (29)

where we used the fact that A12 = 0 and
(
e−(u−t)MQ

)−1
= e(u−t)MQ

.
By simple integration we obtain the matrix (co-)variance swap rate:

V S(t, T ) =
1

T − t

∫ T

t
EQ
t [Σu]du

=
1

T − t

∫ T

t
e(u−t)MQ

Σte
(u−t)MQ>

du+
1

T − t

∫ T

t
e(u−t)MQ

A21du.

Now from

V Sij(t, T ) =
1

T − t
EQ
t

[∫ T

t
Σij
u du

]
=

1
T − t

EQ
t

[∫ T

t
Tr [eijΣu] du

]
=

1
T − t

Tr
[∫ T

t
eijE

Q
t [Σu] du

]
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we easily deduce

V Sij(t, T ) =
1

T − t
Tr
[
Σt

∫ T

t
Liju du

]
+

1
T − t

∫ T

t
Tr
[
eije

(u−t)MQ
A21du

]
,

where Liju = e(u−t)MQ>
eije

(u−t)MQ
.

6.2 Proof of proposition 3.1

The proof of proposition 3.1 is quite technical, so first of all we will give an idea of the
procedure.

Following He and Pearson (1991), the dynamic optimization problem in the incomplete
market can be transformed into a static one by duality theory, where the dual problem
consists in finding the minimax martingale measure associated to the following problem:

J(0, X0,Σ0) = infν∈Z⊥ supXT E
[
Xγ
T
γ

]
s.to: E [HTXT ] ≤ X0

(30)

where ν lies in the orthogonal space with respect to the market price of risk spanned by
the asset prices and it is formally introduced in He and Pearson (1991). The economic
intuition of the previous problem is that in this incomplete market there are infinitely
many price deflators, each of which can be written as the sum of two orthogonal compo-
nents: the first one is associated to λ0 which is spanned by the market, while the second
one is parametrized by ν ∈ Z⊥, where (roughly speaking) Z⊥ denotes the orthogonal
part of the assets’ noises. The minimax martingale measure corresponds to the state
price density which minimizes this orthogonal part consistently with the CRRA utility
criterion. The technical point consits in finding a suitable decomposition of the orthog-
onal part Z⊥ in order to solve explicitely the minimization problem associated to the
variable ν.

Without loss of generality we will assume that ρ>ρ 6= 0. Notice that the case ρ>ρ = 0
is easy to treat: it corresponds to the case where the volatility matrix is independent
of assets’ returns, and is well know that the optimal investment strategy in this case
coincides with the Merton’s ones, see e.g. Karatzas and Shreve (1998) page 305.

From a standard duality argument (see He and Person 1991) the optimal terminal
wealth can be written in the following form:

X∗T = (yHT )
1

γ−1 , (31)

so that
J(0, X0,Σ0) = Xγ

0 inf
ν∈Z⊥

1
γ

E
[
(HT )

γ
γ−1

]1−γ
,
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therefore we can reduce to the following problem:

Ĵ(0, Y0,Σ0) = inf
ν∈Z⊥

E
[
(HT )

γ
γ−1

]
, (32)

where the state variables consist in the Wishart process Σ and market returns Yt whose
dynamics come directly from (2).
Knowing that dZ =

√
1− ρ>ρdB + dWρ we define {αi; i = 1 . . . n− 1} such that

α>i αj = δij (33)

α>i ρ = 0 (34)

thus we have In = ρρ>

ρ>ρ
+
∑n−1

i=1 αiαi
>, where In denotes the n × n identity matrix.

Define

dZ⊥i = dWαi i = 1 . . . n− 1 (35)

dZ⊥n = −
√
ρ>ρdB +

√
1− ρ>ρ
ρ>ρ

dWρ (36)

then (Z,Z⊥i ) are n + 1 independent n dimensional Brownian motions. Let {νi =
Λαi i = 1..n − 1} be the projection of the maket price of volatility risk on the set
of all possible directions αi orthogonal to the market (and the Brownian motion B)
and νn =

√
1−ρ>ρ
ρ>ρ

Λρ +
√
ρ>ρl, that is (minus) the projection of the risk premium

(−Λ
...l) ∈Mn×(n+1) along the direction

(√
1−ρ>ρ
ρ>ρ

ρ>,−
√
ρ>ρ

)
.

By standard techniques, let us consider the change of measure associated to the follow-
ing Radon-Nykodim derivative:

dPγ

dP
| Ft = E(

γ

γ − 1

√
Σλ0, Z)t

n∏
i=1

E(− γ

γ − 1

√
Σνi, Z⊥i )t

where E(θ, Z)t = e
∫ t
0 θ
>
s dZs− 1

2

∫ t
0 θ
>
s θsds. Under Pγ the Brownian motions change accord-

ing to:

dBγ = dB +
γ

γ − 1

√
Σtldt,

dW γ
t = dWt −

γ

γ − 1

√
ΣtΛdt

= dWt −
γ

γ − 1

√
Σt

(
Λρρ>

ρ>ρ
+
n−1∑
i=1

νiα
>
i

)
dt

and from (8) and the definition of νn it follows that

Λρ = νn

√
ρ>ρ(1− ρ>ρ)− λ0ρ

>ρ, (37)
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so that

dW γ
t = dWt −

γ

γ − 1

√
Σt

√1− ρ>ρ
ρ>ρ

νnρ
> +

n−1∑
i=1

νiα
>
i − λ0ρ

>

 dt.

The orthogonal decomposition for the Brownian motions reads:

dZγ = dZ +
γ

γ − 1

√
Σλ0dt

d(Zγi )⊥ = dZ⊥i −
γ

γ − 1

√
Σνidt

such that under Pγ the dynamics of the Wishart covariance matrix becomes

dΣt =
(

ΩΩ> +MγΣt + Σt (Mγ)>
)
dt+

√
ΣtdW

γ
t Q+Q> (dW γ

t )>
√

Σt,

with

Mγ = M +
γ

γ − 1
Q>

√1− ρ>ρ
ρ>ρ

νnρ
> +

n−1∑
i=1

νiα
>
i − λ0ρ

>

>
while the dynamics of the market returns become

dYt =
(
r − 1

2
Vec(eiiΣt)−

1
γ − 1

Σtλ0

)
dt+

√
ΣtdZ

γ
t . (38)

With this change of measure the previous problem (32) becomes:

Ĵ(0, Y0,Σ0) = inf
ν

Eγ
[

exp

{
− γ

γ − 1

∫ T

0
rds+

γ

2 (γ − 1)2

∫ T

0

(
λ>0 Σsλ0 +

n∑
i=1

ν>i Σsνi

)
ds

}]
.

By the Feynman-Kac formula Ĵ(0, Y0,Σ0) solves the following (HJB) PDE:

−∂Ĵ
∂t

= inf
νi,i=1,..,n

{
LγY,ΣĴ + Ĵ

(
− γ

γ − 1
r +

γ

2 (γ − 1)2

(
λ>0 Σλ0 +

n∑
i=1

ν>i Σνi

))}
Ĵ(T, Y,Σ) = 1

where

LγY,Σ = Tr
[
ΩΩ>D +MγΣD + Σ(Mγ)>D + 2ΣDQ>QD

]
+ ∇Y

(
r1− 1

2
V ec

[
Σii
]
− 1
γ − 1

Σλ0

)
+

1
2
∇Y Σ∇>Y

+ 2Tr
[
DQ>ρ∇Y Σ

]
denotes the infinitesimal generator of the Wishart dynamics together with the assets’
returns under the measure Pγ .
Let us now find out the optimal values for ν∗i , i = 1, .., n associated to the minimax
probability measure. The first order conditions give
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0 = ∂νiL
γ
Y,ΣĴ + Ĵ

γ

2(γ − 1)2
∂νi

(
νi
>Σνi

)
then

ν∗i = (1− γ)

(
DĴ +DĴ>

Ĵ

)
Q>αi i = 1 . . . n− 1

ν∗n = (1− γ)

(
DĴ +DĴ>

Ĵ

)√
1− ρ>ρ
ρ>ρ

Q>ρ.

By replacing ν∗ into the HJB equation and using the matrix identity decomposition
based on {αi; i = 1 . . . n− 1} we obtain:

−∂tĴ = Tr
[
ΩΩ>DĴ +MΣDĴ + ΣM>DĴ

]
+ Tr

[
2ΣDQ>QDĴ

]
− Ĵ γ

γ − 1
r

+ Ĵ
γ

2(γ − 1)2
λ>0 Σλ0 + 2Tr

[
DQ>ρ∇Y ΣĴ

]
+ ∇Y

(
r1− 1

2
V ec

[
Σii
]
− 1
γ − 1

Σλ0

)
Ĵ +

1
2
∇Y Σ∇>Y Ĵ

− Tr

[
γ

2
ĴΣ

(
DĴ

Ĵ
+
DĴ>

Ĵ

)
Q>

(
In −

ρρ>

ρ>ρ

)
Q

(
DĴ

Ĵ
+
DĴ>

Ĵ

)]

− Tr

[
γ

2
ĴΣ

(
DĴ

Ĵ
+
DĴ>

Ĵ

)
Q>ρρ>Q

(
DĴ

Ĵ
+
DĴ>

Ĵ

)](
1− ρ>ρ
ρ>ρ

)
− γ

γ − 1
Tr
[
Q>ρλ>0 ΣDĴ + λ0ρ

>QDĴΣ
]

(39)

Ĵ(T, Y,Σ) = 1.

We guess an exponential affine function of the form

Ĵ(t, Y,Σ) = eTr[A(t,T )Σ]+B(t,T )+C(t,T )>Y ,

so that

∂tĴ = ĴTr [∂tA(t, T )Σ] + Ĵ∂tB(t, T ) + Ĵ∂tC(t, T )>Y

DĴ = ĴA(t, T ).

Plugging it into the HJB equation and collecting terms gives the matrix Riccati ODE:

−∂tA = A

(
M − γ

γ − 1
Q>ρλ>0 +Q>ρC>

)
+
(
M − γ

γ − 1
Q>ρλ>0 +Q>ρC>

)>
A

+ 2AQ>QA− 2γAQ>
(
In −

ρρ>

ρ>ρ

)
QA+

γ

2 (γ − 1)2λ0λ
>
0

+
1
2
CC> − 1

2
Cieii −

1
γ − 1

Cλ>0 − 2γAQ>ρρ>QA
(

1− ρ>ρ
ρ>ρ

)
(40)
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and the following linear ODEs for B(t, T ) and C(t, T ):

−∂tB = Tr
[
ΩΩ>A

]
+ C>r1− γ

γ − 1
r

−∂tC = 0,

the initial conditions being A(T, T ) = 0 ∈Mn, B(T, T ) = 0 and C(T, T ) = 0 ∈ Rn. We
deduce that C(t, T ) ≡ 0 therefore (40) can be written in a simpler form{

−∂tA = AΓ + Γ>A+A∆A+K

A(T, T ) = 0,
(41)

with

Γ = M − γ

γ − 1
Q>ρλ>0 ,

∆ = 2Q>
(
In(1− γ) + γρρ>

)
Q,

K =
γ

2 (γ − 1)2λ0λ
>
0 .

Using the linearization procedure we obtain:

A(t, T ) = P−1
22 P21 (42)

B(t, T ) = −β
2

Tr [logP22 + (T − t)Γ]− γ(T − t)r
γ − 1

, (43)

with (
P11 P12

P21 P22

)
= exp

(
(T − t)

(
Γ −∆
K −Γ>

))
.

The last thing to check is the absence of duality gap, that is that the value function of
the primal problem and the dual one are the same. From standard duality theory (see
e.g. Hobson (2004)) it turns out that there is no duality gap if

Et
[
(HT )

γ
γ−1

]
< +∞.

This is equivalent to say that the flow of the matrix Riccati ODE (41) is well defined,
and by Grasselli and Tebaldi (2008) this happens provided that the quadratic term in
the Riccati ODE is positive definite. Therefore there is no duality gap if

In(1− γ) + γρρ> >> 0.

Now, for γ < 0
In(1− γ) + γρρ> = In − γ

(
In − ρρ>

)
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is positive definite because γ < 0 and
(
In − ρρ>

)
is positive definite, in fact from(

In − ρρ>
)(

In +
ρρ>

1− ρ>ρ

)
= In

it follows that it is the inverse of a positive definite matrix.
Otherwise, for 0 < γ < 1,

In − γ
(
In − ρρ>

)
>> In −

(
In − ρρ>

)
,

which is also positive definite, since ρρ> is. The proof is now complete.

6.3 Proof of proposition 3.2

From the expression of the optimal terminal wealth (31) in terms of the price deflator
and the fact that under optimality the product X∗tHt is a martingale it follows that

Xt = H
1

γ−1

t eTr[A(t,T )Σt]+B(t,T ).

Now we differentiate both sides and we equate the diffusions terms, thus obtaining:

π>
√

ΣdZ =
1

γ − 1
(Tr

[
Λ>
√

ΣtdWt

]
− l>

√
ΣtdBt) + 2Tr[QA

√
ΣdW ]

= Tr

[(
1

γ − 1
Λ + 2AQ>

...
−1
γ − 1

l

)
(dW

...dB)>
√

Σ
]

Denoting by ρ̃ = (ρ>,
√

1− ρ>ρ)>, {ui = (α>i , 0)> i = 1..n− 1} and un = (
√

1−ρ>ρ√
ρ>ρ

ρ>,−
√
ρ>ρ)>

we have the identity decomposition

In+1 = ρ̃ρ̃> +
n∑
i=1

uiu
>
i , (44)

so that the previous equality reads:

Tr

[
πρ̃>(dW

...dB)>
√

Σ
]

= Tr

[(
1

γ − 1
Λ + 2AQ>

...
−1
γ − 1

l

)
In+1(dW

...dB)>
√

Σ
]

= Tr

[(
1

γ − 1
Λ + 2AQ>

...
−1
γ − 1

l

)(
ρ̃ρ̃> +

n∑
i=1

uiu
>
i

)
(dW

...dB)>
√

Σ

]

Now we identify the diffusion terms along the direction ρ̃ and we get:

π =
1

γ − 1
Λρ+ 2AQ>ρ− 1

γ − 1
l
√

1− ρ>ρ

=
λ0

1− γ
+ 2AQ>ρ.
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6.4 Proof of proposition 3.3

The hedging component due to stochastic volatility is given by 2AQ>ρ which is equal
to −2JXΣ

JXX
Q>ρ whose first row can be rewritten as

−2∂XΣ11J

X∂XX
(Q>ρ)1 − 2∂XΣ12J

X∂XX

ρ̄

2

√
Σ22

Σ11
(Q>ρ)1 (45)

−2∂XΣ12

X∂XX
J
√

Σ11Σ22

(
− ρ̄

2Σ11
(Q>ρ)1 +

1√
Σ11Σ22

(Q>ρ)2

)
(46)

Following Buraschi et al. (2006) we qualify the first term as the pure volatility hedging
component, the second term is the covariance hedging due to volatility and the last
term is the correlation hedging component. Using the fact that − ∂2

XΣJ

X∂2
XXJ

= A we obtain
the annonced result.

6.5 Proof of Proposition 3.4

By standard arguments based on duality theory in complete markets (see e.g. Karatzas
and Shreve 1998), the value function J(0, X0,Σ0) is given by

J(0, X0,Σ0) =
Xγ

0

γ
E
[
(HT )

γ
γ−1

]1−γ
.

From (4),

E
[
(HT )

γ
γ−1

]
= E

[
exp

(
− γ

γ − 1
rT − γ

2(γ − 1)
Tr
[∫ T

0
Λ>ΣsΛds

]
− γ

2(γ − 1)

∫ T

0
l>Σslds

+
γ

γ − 1
Tr
[∫ T

0
Λ>
√

ΣsdWs

]
− γ

γ − 1

∫ T

0
l>
√

ΣsdBs

)]
= Eγ

[
exp

(
− γ

γ − 1
rT +

γ

2(γ − 1)2
Tr
[∫ T

0
Λ>ΣsΛds

]
+

γ

2(γ − 1)2

∫ T

0
l>Σslds

)]
where in the last equality we made the same change of measure P → Pγ as in the
incomplete market case. Following the same reasoning we find that:

J(t,Xt,Σt) =
Xγ
t

γ
e(1−γ)Tr[A(t,T )Σt]+(1−γ)B(t,T )

where A(t, T ) and B(t, T ) are given by

A(t, T ) = P−1
22 P21 (47)

B(t, T ) = −β
2

Tr [logP22 + (T − t)Γ]− γ(T − t)r
γ − 1

, (48)

with (
P11 P12

P21 P22

)
= exp

(
(T − t)

(
Γ −∆
K −Γ>

))
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Γ = M + γ

γ−1Q
>Λ>,

∆ = 2Q>Q,
K = γ

2(γ−1)2

(
ΛΛ> + ll>

)
.

6.6 Proof of Proposition 3.5

In order to determine the optimal weights (π∗,Π∗), as in the incomplete market case

from Xt = H
1

γ−1

t eTr[A(t,T )Σt]+B(t,T ) we differentiate both sides and we equate the diffu-
sions terms, thus obtaining:

Tr

[(
dZtπ

>
t +

2
τ
dWtQΦt

)√
Σ
]

= Tr

[(
1

γ − 1
Λ + 2AQ>

...
−1
γ − 1

l

)
In+1(dW

...dB)>
√

Σ
]

where
Φt =

∫ τ

0
esM

Q>
Πte

sMQ
ds.

Since the equality holds for all Σt we deduce:(
πtρ̃
> +

2
τ

(ΦtQ
>...0)

)
(dW

...dB)> =
(

1
γ − 1

Λ + 2AQ>
...
−1
γ − 1

l

)(
ρ̃ρ̃> +

n∑
i=1

uiu
>
i

)
(dW

...dB)>,

which leads to:

πtρ̃
>+

2
τ

(ΦtQ
>...0)

(
ρ̃ρ̃> +

n∑
i=1

uiu
>
i

)
=
(

1
γ − 1

Λ + 2AQ>
...
−1
γ − 1

l

)(
ρ̃ρ̃> +

n∑
i=1

uiu
>
i

)
(49)

Now by identifying the diffusion terms along the direction ρ̃ we get

πt +
2
τ

ΦtQ
>ρ =

1
γ − 1

Λρ+ 2AQ>ρ−
√

1− ρ>ρ
γ − 1

l =
λ0

1− γ
+ 2AQ>ρ

while by projecting along the (orthogonal) direction un we have

2
τ

ΦtQ
>ρ

√
1− ρ>ρ√
ρ>ρ

=
(

1
γ − 1

Λρ+ 2AQ>ρ
) √

1− ρ>ρ√
ρ>ρ

+

√
ρ>ρ

γ − 1
l,

which leads to

2
τ

ΦtQ
>ρ = 2AQ>ρ+

1
γ − 1

1
1− ρ>ρ

(Λρ+ λ0ρ
>ρ).

Now we plug the previous expression into (49) and rearranging terms we arrive to

πt = − 1
γ − 1

1
1− ρ>ρ

(λ0 + Λρ).

In order to determine Φ we project the relation (49) along the (orthogonal) directions
ui i = 1, .., n− 1, thus obtaining:
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2
τ

ΦtQ
>αiα

>
i =

1
γ − 1

Λαiα>i + 2AQ>αiα>i .

Now summing up the equalitites with respect of all directions and using the identity
decomposition we arrive to the symmetric matrix representation for Φ:

1
τ

Φt =
1

4(γ − 1)

(
Λ
(
Q−1

)> +
(
Q−1

)
Λ> +

lρ>√
1− ρ>ρ

(
Q−1

)> +Q−1 ρl>√
1− ρ>ρ

)
+A,

which gives the result.
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SP500/DAX

M11 -3.44
Std. Dev. (0.239)

M12 1.17
Std. Dev. (0.211)

M21 0.22
Std. Dev. (0.469)

M22 -2.87
Std. Dev. (0.21)

Q11 -0.05
Std. Dev. (0.01)

Q12 -0.1
Std. Dev. (0.012)

Q21 0.07
Std. Dev. (0.007)

Q22 0.07
Std. Dev. (0.014)

β 10.65
Std. Dev. (0.733)

ρ1 0.3
Std. Dev. (0.067)

ρ2 -0.2
Std. Dev. (0.071)

Table 1: Estimation results of the WASC under the P probability measure.

Parameter Estimates

Λ11 -31.57
Std.Dev. (-)

Λ12 18.95
Std.Dev. (-)

Λ21 14.74
Std.Dev. (-)

Λ22 -18.95
Std.Dev. (-)

Table 2: Variance risk premium matrix
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SP500 Descriptive statistics

Maturity Mean Std. Dev. Skewness Kurtosis Autocorrelation

2 0.13 0.02 0.49 2.76 0.9988
3 0.14 0.02 0.39 2.69 0.9991
6 0.14 0.01 0.4 2.88 0.9996
12 0.15 0.01 0.4 2.89 1.0001
20 0.15 0.01 0.34 2.67 1.0002

DAX Descriptive statistics

Maturity Mean Std. Dev. Skewness Kurtosis Autocorrelation

2 0.18 0.02 0.25 2.67 0.9986
3 0.18 0.02 0.26 2.76 0.999
6 0.18 0.01 0.55 2.97 0.9995
12 0.19 0.01 0.49 2.7 0.9997
20 0.19 0.01 0.45 2.72 0.9997

Table 3: Descriptive statistics for variance swap prices

SP500 Descriptive statistics

Maturity Mean RMSE Autocorrelation Max R2
2 -0.14 1.01 0.59 5.95 0.68
3 0.11 0.84 0.57 5.22 0.71
6 0.15 0.56 0.51 3.55 0.76
12 -0.05 0.41 0.56 2.47 0.75
20 -0.03 0.4 0.75 1.84 0.65

Average -0.02 0.61 0.596 5.95 0.71

DAX Descriptive statistics

Maturity Mean RMSE Autocorrelation Max R2
2 0.1 0.8 0.28 3.38 0.86
3 0.14 0.69 0.31 2.69 0.86
6 0.09 0.51 0.42 1.91 0.86
12 -0.14 0.51 0.76 1.54 0.87
20 -0.1 0.62 0.9 1.63 0.86

Average -0.04 0.63 0.534 3.38 0.81

Table 4: Descriptive statistics for variance swap pricing errors
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Declared BPT results Correct BPT results WASC results

SP500 DAX SP500 DAX SP500 DAX

Total 10 11 0.77 1.01 0.63 0.89

Vol Hedging 1.5 2 0.35 0.55 0.27 0.53

Covol hedging 2.5 3 0.06 0.44 0.15 0.18

Correlation Hedging 6 6 0.36 0.01 0.21 0.19

Table 5: Detailed decomposition of intertemporal hedging demand on both assets in
terms of percent over the myopic startegy
To recompute the Buraschi et al. (2006) solution, we used the estimates provided in the version of their paper

issued on March 19th, 2007. The values for M , Q and β are:

M =

(
−0.2816 0.0147

0.0502 −0.1548

)
Q =

(
−0.0009 −0.0030

0.0028 0.0022

)
β = 10

The sample moments presented in Buraschi et al. (2006) for the returns are:

µ =

(
0.135

0.1106

)
Σ =

(
0.1597

0.2013

)
ρSP/DAX = 0.3672

The risk-free rate has been chosen as the average risk-free rate over their estimation period. The solution that

we recomputed proved not to be very sensitive to the model’s parameters, but the Q matrix. This is not a

surprise since Q is controlling the volatility risk: should this matrix be multiplied by 10 – without changing

the remaining parameters – and the results obtained would be close to what is obtained in the Buraschi et al.

(2006) paper. However, in order not to change the distributional properties of the estimated process, M should

also be scaled accordingly. In such a case, the hedging ratio is again far below 5%.

SP500 DAX

µ 0.0793 0.0821
rf 0.0496 0.0411

Table 6: Risk free rate and estimated drift

Parameter Estimates

Σ11 0.02359
Σ21 0.01505
Σ22 0.04762

Table 7: Initial Value for Σ0

Hedging ratios

SP500 -4.7395
DAX 3.3667

Table 8: Heding demand in the complete market case
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Hedging Ratios
Incomplete Complete

π1 0.2995 -4.7395
π2 0.1939 3.3667
Π11 - -58.301
Π12 - -77.135
Π22 - 53.245

Table 9: Hedging ratios for the assets within the two models.

π1 (resp. π2) is the hedging ratio for the first (resp. second) asset. Π11 (resp. Π22) stands for the

hedging ratio for the variance swap on the first (resp. second) asset and Π12 is the hedging ratio for

the covariance swap contract.
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