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Abstract

It is well known that credit rating transitions @ a serial correlation, also known as a rating
drift. This is clearly confirmed by this analysighich also reveals that the credit rating
migration process is mainly influenced by three ptately different non-observable hidden risk
situations, providing an individual environment &ach successive rating. This finding violates
the common stationary assumption. The hidden ritslations in turn also serially depend on
each other in successive periods. Taken togetlogh, lepresent the memory of a credit rating
transition process and influence the future ratifig.take this into account, | introduce an
extension of a higher order Markov model and a Mavkov mixture model. Especially the

later one allows capturing these complex correfatgiructures, to bypass the stationary
assumption and to take each hidden risk situattm account. An algorithm is introduced to
derive a single transition matrix with the new diddial information. Finally, by means of

different CVaR simulations by CreditMetrics, | shothat the standard Markov process

overestimates the economic risk.
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1 Introduction

Markov chains play a crucial role in credit risketiny and practise, especially in estimating
credit rating transition matrices. A rating trarmit matrix is a crucial input for many credit risk
models, such as CreditMetrics (see Gupton 1997)CGarditPortfolioView (see McKinsey&Co
1998). The most used basic Markov process is altiomeogeneous discrete time Markov chain,
which assumes that future evolution is independérthe past and thus solely depends on the
current rating state. The transition probabilitseif is independent of the time being. Ample
empirical research has been done on the validithese Markov properties and the behaviour
of empirical credit rating migration frequencies.

The following non-Markovian properties violatingethassumptions of the standard
Markov model have been found and confirmed. FikKman and Kao (1992), Kavvathas, Carty
and Fonds (1993), Lucas and Lonski (1992) and Mao(iy993) provided evidence for a so-
called rating drift. They all found that the probayp of a downgrade following a downgrade
within one year significantly exceeds that of agnaple following a downgrade and vice versa.
This gives rise to the idea that prior rating chesgarry predictive power for the direction of
future ratings which was also confirmed by moreambed recent studies by Christensen et al.
(2004), Lando and Skleberg (2002) and Mah, Needham and Verde (2005)hémore, the
downward drift is much stronger than the upwardt daind obligors that have been downgraded
are nearly 11 times more likely to default thanseanthat have been upgraded; see Hamilton and
Cantor (2004). On the other hand Kriger, Stotzed, Brick (2005) found a rating equalization,
i.e. a tendency that corporates receive a ratimgy tlready received 2 or 3 years ago before
they were up- or downgraded. This might be drivethe fact that the rating system is based on
logit-scores and financial ratios. Frydman and &cmann (2007) showed with Markov mixture
models that empirically that two companies withnitieal credit ratings can have substantially
different future transition probability distributis, depending not only on their current rating

but also on their past rating history. They propoaemixture model based on two continuous-



time Markov chains differing in their rates of mavent among ratings. Given a jump from one
state, the probability of migrating to another stigtthe same for both chains, since they use the
same embedded transition probability matrix. Furtiege the authors also conditioned their
estimation on the state of the business cycle ahdsitry group. However, this does not remove
the heterogeneity with respect to the rate of mamntSecond, Nickell et al. (2000) and Bangia
et al. (2002) provided evidence that rating tramsg differ according to the stage of the
business cycle where downgrades seems to be rketg iln recessions, and upgrades are more
likely in expansions. In line with this finding, Mieil and Wendin (2005) used models from the
family of hidden Markov models and found that resikl cyclical and latent components in the
systematic risk still remains even after accountmgthe observed business cycle covariates.
Third, Altman and Kao (1992) found that the timecs issuance of a bond seems to have an
impact on its rating transitions since older cogperoonds are more likely to be downgraded or
upgraded in comparison to newly issued bonds. Bi®y came up with an additional ageing
effect with a default peak at the third year whitien decrease again. Kavvathas (2000)
provided further evidence that upgrade and dowrgyratensities increase with time since
issuance (except for BBB and CCC rated bonds raggrithe downgrade intensity). Further
Krtger, Stotzel, and Truck (2005) clearly rejece time-homogeneity assumption by an
Eigenvalue and Eigenvector comparison. Fourth, &lickt al. (2000) investigated the issuers’
domicile and found for example that Japanese issasx more likely to be downgraded in
comparison to the international average which veagicned by Nickell et al. (2002), providing
fifth evidence that the issuers’ domicile and bassline in a multivariate setting, along with
the business cycle, also impact rating transitiofise credit cycle has the greatest impact
thereupon. Finally, Nickell et al. (2000) found ttlae volatility of rating transitions is higher
for banks and that large rating movements aregsitikely or more likely for industrials.

In this study, | focus on the credit rating migoatievolution, the serial correlation

supposed by the rating drift and the time-homodgnassumption. Hence, a comparison



between different Markov models is conducted and #tonomic impact of all these
assumptions is shown. The goal is to account ®mnttn-Markovian with a special focus on the
inherent serial correlation and the non-stationfingings without limiting the estimation
process with any restrictions or assumptions. fothice two new models, the Markov
Transition Distribution model (MTD) for higher ondelependencies and the Double Chain
Markov Model (DCMM) for non-stationary higher ordime series modelled by hidden states.
| show that the rating transient behaviour is mmmplex than is commonly assumed and that
serial correlation cannot be captured by simplynigkhe tuple of the current and the previous
ratings into account, as the drift might suggesie $erial correlation is seen in a dynamic way
by taking into account the direction from where firevious rating migrated as well as the
whole risk situation from the previous and currestings. The results reject the stationary
assumption in rating migrations and therefore c¢anfand endorse Lando and Skgdeberg's
study (2002). Furthermore, | show where this violaicomes from and where it takes place. In
the peer group, | find that the best model to a&péll these issues is the double chain Markov
model based on three hidden states. In a timeedesevorld, each hidden state depends on its
predecessor. This model incorporates the idea peapby Frydman and Schuermann (2006) but
enhance it with additional information about thekrintensities, the likelihood of occurrence of
the hidden states and beside the “normal” mostagliebrisk situation with two further complete
different risk situations determining one parttod inodelled serially correlation structure.

In the next section, the underlying data are dbedtiln Section 3, the models necessary for
the analysis are explained. In Section 4, the tesuk presented and validated with some test
statistics. An approximation of an out of sampk shows the difference to the assumed simple
correlation structure by the rating drift is shownfinal matrix that preserves the information
from the risk history is introduced and with itslhéhe economic impact is shown by a

CreditMetrics simulation; Section 5 concludes.



2 Datadescription
This study is based on S&P rating transition obstons and covers 11 years of rating history
starting on 1 January 1994 and ending 31 Decenti@%.2The data are taken from Bloomberg
with no information on whether the rating was stgid by the issuer or notGiven the broad
range of different ratings for a given obligor,deua rating history for the senior unsecured debt
of each issuer. | treat withdrawn ratings as ndarmation, hence distributing these
probabilities among all states in proportion toithealues. In order to obtain an unbiased
estimation of the rating transitions, | do not gpgtie full rating scale (including the + and -
modifiers of S&P), because the sample size in eatbgory would be too small. Instead, | use
the mapped rating scale with 8 rating classes, #&¥A to D, throughout.

| apply an international sample of 11,284 rated panies, distributed as 60% from the
USA, 4.6% from Japan, 4.6% from Great Britain, 3.8t Canada, 2.5% from Australia, 26%
from France, and 2.4% from Germany. The rest os#draple is distributed over South America,
Europe and Asia. The data set consists of 47,98@grabservations (31% upgrades, 69%
downgrades). The rating categories D (default), (SElected default) and R (regulated) are
treated as defaults and | find 492 defaulted isster S&P. For 82 issuers, more than one
default event is obtained, whereby the assumpsoadopted that if a company is going into
default, it will stay there. | therefore do notaail any cured companies, which means that | keep

the current rating history until the first defaaticurs.

3 Model description
As a starting point, and to show that rating triamiss do not follow complete random walks, |
introduce the Independence Model. It assumes #@dt successive observation is independent

of its predecessor. Next, the standard model mdhea, the discrete time-homogeneous Markov

! See Poon and Firth (2005) or Behr and Giittler (P@fierecent research in this area.
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chain in first order, is defined as: [&t be a discrete random variable taking values imitef
setN :{l~--,m}. The main property of a first order Markov charthat the chain forgets about
the past and only allows the future state to depepdn the current state. The time-
homogeneous assumption states that the probabflichanging from one state to another is
independent from the time being. In other words, ftiture state at time+1 and the past state
at timet — lare conditionally independent given the preseate3t, =i. This Markov property
indicates that the evolution of the direction islependent of the time being. The transitions
between the different ratings states are captumed time-independent transition probability
matrix Q, where each row sums equal to one; see Brémauwd Y 20he transition probabilities
are then defined as:

g, =P(X, =ig|X,4 =i;) wherei,,....i, OfL...,m} 1)
As the rating drift might suggest, the most strégfvard way to incorporate serial correlation
into the estimation process would be to take olagems from an obligor’'s past rating history
into account instead of merely conditioning theufatrating on the current one. At first glance,
the most intuitive way would be to model it as anlegeneous Markov chain in a higher order
mode. In a higher order Markov chain of orderthe future state depends not only on the
present state but also o(h—l) previous states, which seems to cover the requbaeth
dependence assumed in this simple dependenceuseru€he transition probabilities of a higher
order Markov chain are then defined as:

q, . =P(X, =io|Xes =iy Xy =iy)  wherei,,..ip O{L...,m} )
For the purpose of illustration, we will assumeeamd order Markov chain whete=  \ith
only three statggn=3). In this case, the future stafe+1) depends on the combination of the
current onelt,) as well as the previous stéte-1); see Pegram (1980). The transition ma@ix

is then defined for the above example as:
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As can be seen for a higher- order Markov chalmesnumber of different states rapidly increase
(in our example it would result im' =3 =9 states). Particularly if one applies it to credit
rating data with at least 8 rating categories,auld expand in a second order mode to a matrix
with a dimension of 64x8. Even if it seems to b&raightforward way to consider memory in
the estimation process, the huge number of ratinghbinations necessary for a fully
parameterised model is obviously a major drawbaAcklitionally, matrices with these kinds of
dimensions are not feasible as input for other nwo@®g. reduced form models), especially
since the estimated matrices always result in assepmatrix. Nevertheless, in order to see
whether this estimation technique really best aastuhe migration behaviour and the serial
correlation, | will take it into account.

In order to bypass this problem and to extend dee iof higher order Markov chains, |
introduce the Mixture Transition Distribution mod®TD) introduced by Raftery (1985) and
further developed by Berchtold (1999 and 2002). ifagor advantage of this model is that it
replaces the global contribution of each laggediopgeto the present by an individual
contribution from each lag separately to the prederthis way, it bypasses the problem of the
large number of estimated parameters from the MGuRis capable of representing the
different order amounts in a very parsimonious waygeneral, an-th order Markov model

needs to estimaten' (m-1) parameters, whereas the MTD model with the sarderaonly



needs to estimate{m(m—l)]+l -1 parameters, meaning that there is only one additio
parameter for each lag. In general, the MTD modaplans the value of a random variab¥e
in the finite setN ={1....,m} as a function of thé previous observations of the same variable.
Hence, the conditional probabilities are a mixtafdéinear combinations of contributions to the
past and will be calculated as:

|

P(X, Zig| Xy =iy Xy =ip) = Z;)lgp(xt =io|Xog = i) (4)

Here A, denotes the weights expressisl_g the effect of &agly on the present value of X (i.e.
I,). This model is especially feasible if the currstate does not depend on dastiates, but the
past states influence the future state (with eash gtate exerting a unique influence).

In order to model the estimation as accurately @ssiple and to account for (possibly
non-Markovian) influencing factors without makingpdicit assumptions, the last two models
are taken from the class of hidden Markov modelsIi. A migration to a certain state can
thus be observed without having any assumptionsutaladat really drives the process.
However, one important assumption and a major daakwbn a HMM is that the successive
observations of the dependent variable are suppimsée independent of each other. But in
contrast to Christansen (2004), | also specify ihisecond order mode and let the hidden states
depend on each other within two successive peribeisus consider a discrete state discrete
time hidden Markov model with a set aofpossible hidden states in which each state is
considered with a set ofi possible observations. The parameter of the modkides an initial
state distributionzn describing the distribution over the initial stagetransition matrixQ for
the transition probabilities); from stateito statej conditional on state and an observation
matrix b (m) for the probability of observingn conditional on state Note that alsay; is time
independent.

In the last model, | focused on a combination ob tmodels called a Double Chain

Markov Model. It was first introduced by Berchto{d999) and further developed by the

2 The parameters can be estimated using the Baum-Véddehithm; see Rabiner (1989). For further detatt®ut HMM
models, see Rabiner (1989), Cappé, Moulines and Rd&%) and MacDonald and Zucchini (1997).
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Berchtold (2002). This model is a combination oH&IM and a non-homogeneous Markov
chain and is thus especially feasible for modelhong-homogeneous time series. | will hereafter
abbreviate it as DCMM. In contrast to the HMM theCldM allows the observations to
dependent on each other, which overcomes the dckwdfathe standard HMM. The idea of
such combinations is not new. First Poritzer (198288) and then Kenny et al. (1990)
combined the HMM with an autoregressive model. Thesimilar model was presented by
Welkens (1987) in continuous time and by Paliw&83) in discrete time. If a time series is
non-homogeneous and can be decomposed into adetitef different risk situations during the
time period, the DCMM can be used to control tlaasition process with the help of individual
transition matrices for each hidden state. Tha msajor improvement compared to the model of
Freydmann and Schuermann (2007) since their twmshese the same embedded matrix. The
discrete time DCMM combines the HMM governing tledation between states of a non-
observable variableX, and a visible non-homogeneous Markov chain gowugrtihe relation
between successive outputs of an observed vaNablie order to implement memory into the
estimation, | allow the hidden states and the oladde ratings respective to depend in a higher
order mode on each other. LUetlenote the order of the dependence between thebssrvable
X's and let f denote the order of the dependence between thevabseY's. Then X, depends

on X.,,...,X,,, whereasY, depends onX, andY,,,...,Y,;. Using these properties, the
DCMM can account for memory in two different wayatrst, it allows several hidden states
with their respective transition matrices to dependceach other and therefore enables individual
risk situations to interact fdrsuccessive periods with each other. Second, asMC_2, the
observableY,’s are allowed to depend on each other ffauccessive periods and therefore
permitf successive rating observations to depend on daeh. @bviously, since the successive
rating observations are captured in their indiviquabable complete different risk situations,

the DCMM clearly adds explanatory power to thensation compared to the MC_2.



A DCMM of order | for the hidden states and of orderfor the observed states can be
fully described by a set of hidden stat&¥X)={1...,M}, a set of possible outputs
S(Y) :{l..., K}, the probability distribution of the firdt hidden states given the previous states
7 :{nl,nz‘l...,nl‘lp__,_lf and anl order transition matrix of the hidden statds {ajlp_”jo} where

a . = P(Xt = j0|Xt_I = e Xy = jl). Finally, for this output, a set of order transition

Jivdo
matrices between the successive observations Yhdhe particular state of X are calculated
and defined as

C e (C(jo))_ Wlth C(io) :{Ci(jO) i } (5)

where Ci(fj?.?.,io = F’(Yt =i0‘Yt_f iy, Y, =i X, = jo)
determines the process. In the case of an ordeurtrhe 1, the number of parameters for the
transition matrix of the hidden statésand the transition matrix of the observatidbscan
become quite large. In this cageand each matrix d can be replaced and approximated by an
MTD Model; see Berchtold (2002).

In general, the probability of observing one paitac value j, in the observed sequence
Y, at timet depends on the value Xf_, ,..., X,_,. The problem is, that in order to initialise this
process] successive values of, are needed, but they are unobservable. The DCMdasses
this problem by replacing these elements with podita distributions where the estimated
probability of X, is denoted by, and the conditional distribution &f given X,,..., X is
denoted as;, ;.

A DCMM is then fully defined by u as u={mAC} with >~ M°M -1)
independent parameters for the set of distributiansM ' (M —1) independent parameters for
the transition matrices between the hidden s#atesnd MK (K —1) independent parameters
for the transition matrices between the observatidxs 1 shows, three sets of probabilities

have to be estimated, which is done using the Ejdrithm? Because of the iterative nature of

the EM algorithm, it is rather a re-estimation them estimation. Instead of giving a single

3 This algorithm is also known in speech recognititerature as the Baum-Welch algorithm.
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optimal estimation of the model parameters, thesténation formulas for, A and C are
applied repetitively, each time providing a betestimation of the parameters. After each
iteration of the EM algorithm, the likelihood ofetdata also increases monotonically until it
reaches a maximum. As in the standard EM algorithinjoint probability of the hidden states
(£,) and the joint distribution of the hidden sta(&s) are used. For a higher order modeis

then estimated as:

A

E\L...,t—l(Jt—l’-“'

- Wiliaodo)

o) = . (6)

" Vealica )

Finally, the important higher order transition pabbities between the hidden states are

estimated as T-1
Dt Jiseeordon )

Ji-1,0--1Jo0] T -1

ZVt(J._l, o)

while the higher order transitions between the pls®ns are estimated as

S S ,yt(J.l,.)
A _Zlff ,,,,, tozu Z1 (8)

Gty = |
Zth Sif e Ytl.lz,,l—l ZJ 1yt(J| S ERARRE] )

After the model is estimated, one can search ferdptimal sequence of the hidden states in
order to maximise the conditional probability

P(Xyroe X Y e Y ) 9)
and equivalently the joint probability

P(Xp0o s X5, Yoo Yy ). (10)
This can be done with the Viterbi algorithm, whigh an iterative dynamic programming
algorithm for indicating the most likely sequendéhmden states — also known as Viterbi path.
The goal of the algorithm is to find in an efficiemay the best hidden path sequence with the
help of the hidden Markov model (see Forney 19T8)achieve this, the Viterbi algorithm is
run separately upon every single sequence, giangdch obligor the best non observable path

of hidden states.

10



4 Results
4.1 In-sample assessment of various accuracy measures
As a starting point, the Independence Model isutated, then the homogeneous Markov chain
of orders 1 and 2, the MTD in a second order, a HMi¥h 2 and 3 hidden states in first and
second orders and finally, different combinatioristree DCMM model. In order to have a
guantitative criterion for deciding which stochastnodel fits the data best, the accuracy
measures log likelihood, the Akaike Informationt€rion (AIC), and the Bayesian Information
Criterion (BIC) are computed. For the purpose omparison, the initiaf observations are
dropped. Generally, this is based on the modelratithe time series in order to have the same
number of elements (59,969) in the log likelihootl each model. In other words, let
Y .,---,Yodenote the first observations, theq,...,Y; are the observations used in the
computation of the log likelihood. Here, the staddérst order Markov model is set as the
benchmark model. The analysis shows that the migsifisant model is a Double Chain
Markov Model (DCMM) with 3 hidden states in a sedoorder dependency structure. The
outcome results in the desirable dimension of st farder Markov chain. Therefore, it will
hereafter be labelled as DCMM_3 2 1 and every atiadel is labelled with “_a b” where a
denotes if existent the number of hidden statesbantich is always given the order amount.
The first model, the Independence Model, assumaisehich successive observation is
independent of its predecessor. As expected, tloideinstrongly favours the rejection of the
MC_1, which clearly confirms that rating transittolo not follow a random walk but are
conditional on “something” previous (see Table i tlee performance results). As described
earlier, the most straightforward way to incorperatemory into the estimation would be to
increase the order of a first order Markov chainC(M) to a second order Markov chain
(MC_2). The results clearly show an improved aacymmeasure for the MC_2, indicating that
a dependency in successive rating observations iddegd exist. The Log Likelihood drops

from -34,063 to -31,391 and the AIC as well asBle reduces from 68,211 to 63,038 and from
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68,589 to 64,190 respectively. Based on a Likelthé&atio test, Kriiger, Stotzel, and Trick
(2005) clearly confirmed this results for a secander Markov chain. However the hypothesis
whether a third order Markov property leads to ebetter results were rejected. Keeping this in
mind and since a third order Markov chain wouldeyate a very sparse matrix; it would not
make any sense to compare it with the other moddis. second order MC also needs to
estimate a huge number of state combinations anddvwamiditionally result in a sparse matrix.

However, as described earlier, the MTD_2 modeldigsificantly fewer parameters to estimate
(42) compared to the MC_2 (128). Furthermore, thizdel confirms that it is not only the

current rating that determines the future rating dso its history. The log likelihood reduces
from -34,063 of the MC_1 to -32,837, the AIC fro,B11 to 65,758 and the BIC drops from
68,589 to 66,136. It is obvious that the solelygked) rating one period before definitely
influences the future rating, but with less infotiva power than in combination with the

current rating, as with the MC_2.

At this point, it would be interesting to know whet the rating itself has the sole or
most predictive power or whether other influenciiagtors (like the complete risk situation
driven by several unobservable issues (e.g. theamep) in a non-stationary world) contribute
significantly to explanatory power. For this catiee class of hidden Markov models (HMM)
provides another solution, as they do not makeassymptions as to what drives the output. In
the case of the HMM (as expected from the indepeceleassumption, which was already
disproved through the results of the MC_2 and MTbg HMM without any explanatory
covariates is hardly a good model for the undedydata and application to credit rating
migration data. The log likelihood as well as th&CAand BIC are closer to the Independence
Model than to the MC_1. Interestingly, a HMM withrée hidden states performs much better
than a HMM with two states with an AIC of 141,216daBIC of 141,639 compared to an AIC
of 171,966 and BIC of 172,155. This can be seea &gther indication that a credit rating

transition process is driven by three different hgervable drivers or situations. They may
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themselves be a combination of several risk dinmgrssilike the economic cycle, or even the
previously described non-Markovian properties.

In contrast with the DCMM, it seems obvious tha MC_2 can only partly model the
correlation structure, since the DCMM is much maloée to fit the data. The DCMM with three
hidden states in a second order dependence seuwdaarly beats every other model. Compared
to the MC_1, the BIC reduced by about 8,772 (12;8k@ AIC and the log likelihood were also
reduced by significant amounts (9,762 (14.3%) a@84(14.6%), respectively) (see Table 1).

In order to really know how many hidden statesdireing the process, | also compute
the DCMM with 1 up to 5 hidden states, but thregden states clearly dominate every other
combination of hidden states. Next, in order toehavcloser look at the correlation structure
itself, | compute several DCMM models with diffetasrder amounts of the hidden states. In
this way, the estimation of the transition probiéibsg are conditioned on different combinations
of successive risk and rating situations in ordefirtd the best suitable memory history driving
the transient process of an obligor’s rating higtdifind that regarding the log likelihood, BIC
and AIC, the DCMM with three hidden states in secorder dependence structure clearly beats
every other order combination. In order to fadiétacomparison, | again drop the firkt
observations from each time series. If one incre#se order amount to 3 and hence considers a
risk situation of one additional period and oneitdidal rating compared to the DCMM_3 2 1,
the log likelihood increases from -29,066 to -22,1®&hereas the AIC and BIC increase from
58,436 and 59,776 up to 58,673 and 60,472, reseéeli Even combinations of more than
three hidden states with an order higher than tveobaaten by the DCMM_3_2 1. Finally, as
described above, the DCMM is capable of estimatimeggmatrix of the hidden state as well as
the matrices of the observations with the MTD. Ewahculations with this approximation
clearly support the finding that the DCMM_3_2_Efiiting transition data best. In general one

can raise the question regarding the high amoupaaimeters, especially for MC_2 (128) and

* Note that the figures of the DCMM in second orgleable 1) differ since one additional observaticaswdropped.
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the DCMM_3 2 1 (152) and of how much faith can beip this case into the AIC and BIC.
Since this could not be part of this analysis @vies room for further research as well as the
point that the unobserved variables may be degrelesedom fitters.

In summary, simply taking two successive ratingesbations into account and allowing
this combination to determine the next future mtis not the best way as suggested by the
rating drift. This is clearly just one part of theemory and adds predictive power (as already
indicated by the MC_2). Therefore, the best andtraosurate way would be to consider two
successive rating observations along with two ssgige complete risk situations, with
individual risk intensities driving the process. Bging this process, | also circumvent the
resulting sparse matrix, which is clearly one oé thiC_2’s shortcomings. This approach
confirms and particularly extends the results obv@ter, Daris and Giampierin (2004) with
respect to their postulation that the process igedrby just two states, a risky state and non-

risky state.

4.2 Estimation results: transient behaviour and transition matrices

To obtain an idea of how the transient behaviour the correlation structure really behave and
interact between the hidden states, it is necedsafgcus more closely on the results of the
DCMM_3 2 1 (see Table 2-3). As shown by the fiigdlen state distributio(ml), the starting
state in the process of credit rating migrationsmish a probability of 66.23%, the first hidden
state and with grobability of nearly 30.27%, the third hidden stawith a probability of
3.51%, the second hidden state would be the gsgahichden state. Conditional on the previous
hidden states, the distribution of the next hidstete distributior{ﬂzyl) clearly shows that if the
first and second hidden states are the currenesstat is very likely (95.33% and 100%,
respectively) that the process will return to tinstthidden state. The situations looks differént i

the process is currently in the third hidden st8iace this was not unlikely (30.27%), one can
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see that there is a reasonably good chance thathittte hidden state (30.71%) will prevail.
Again, the first hidden state is likely to domin#te process again (69.29%) (see Table 2).

The higher occurrence probability of the first reddstate indicates that the chance of
being in a stationary world is very high, but tha probability of transitioning to the second or
third hidden states, each with completely diffengsk intensities lies considerably in the future.
In order to quantify how the hidden states dependeach other, a second order transition
probability matrix of the three hidden states (Bal3) is computed. Again, as previously
described, if in(t, ) the first hidden state is currently the actual,énis likely that it will also be
the active one in the future stafe,) regardless from which hidden state in the previous
period(t_l) it migrates. However, if in the previous perioe gecond hidden state was the active
one, and currently the first hidden state is the&vamne there is a 22% chance of migrating to
the third hidden state irft,,) and an 8.4% chance to migrate to the second orreat \ig
interesting to note is that the future transiertawour of the second and third hidden states are
almost identical conditional on the previous hiddéate. The picture looks much different if the
second or third hidden state is active(ip). In this case, if either one was migrated from the
first hidden state, it is almost certain that thegess will revert back to the first hidden state i
(t.,). On the other hand, if the process migrated frtwa third hidden state, there is no
uncertainty that the process will occupy the sedudden state i(t+1). Here one can clearly see
that a rating history is not necessarily a statipmaocess, since the origin of the current hidden
state -- and thus the corresponding previous rgktson -- definitely matters.

A change of hidden states in a process would natb®arkable if their associated risk
intensities would also to stay the same. As preslijodescribed in the model, for each hidden
state an associated individual transition matri i estimated (Tables 4-6). A comparison
between the matrix estimated by the MC_1 (Tabland the three matrices shows tremendous
differences in the distribution of the probabiltyass (see Table 8). This also confirms the

finding of Kruger, Stotzel, and Trick (2005), hentteey found that the entire transition
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probability matrix vary over time. The transitiomopability matrix for the first hidden state
(Table 4) looks quite similar to the transition lpability matrix normally derived from the
MC_1. In other words, being in the first hiddentestavould result in a nearly normal risk
situation. However, the risk situation in the ffitsdden state is more stable because more
probability mass is located at the diagonal conganethe matrix estimated by the MC_1. On
the other hand, the probability of defaulting ireges slightly for every current rating. In
contrast, the matrix of the second hidden statbl€r'a) shows, with the exception of the default
column, an absolute moving character (as proposeBrydman and Schuermann’s Mover-
Stayer Model (2006)). But the DCMM provides addiaib information about the direction in
which the rating is likely to move. For the invesim grade area down to rating graileone
can clearly see that the trend has a downward stopaning that the better a rating is, the more
likely it will be downgraded. By contrast, in thpezulative grade area from ratiB§B down to

the ratingCCC, it is significantly more likely that the ratingilwbe upgraded next. In other
words, the second hidden state can be seen as\efrsiate” with a “threshold” at ratiri§BB.
This transient behaviour is absolutely comprehdesibince it demonstrates the common
understanding of rating movements across the ragtiades. However, with respect to the matrix
of the third hidden state (Table 6), it can be seea very stable “stayer state” (as suggested by
the second Markov chain in the Mover-Stayer Modempared to this model, it also provides
additional information about the risk intensitifs likelihood of occurrence of the hidden states
and the “normal” most probable risk situation, egamted by the first hidden state. A further
important enhancement offered by the DCMM as shitwloes not assume that the probability
of entering one state has to be the same for bb#ing; instead, these probabilities are
determined by a separate transition probabilityrimathe DCMM also covers the memory of a
drift, which is not possible in this fashion wittiet mixture models. Given all these information
about hidden states it really would be interestidgich factors or even functional relationships

are covered by them. Furthermore it would be istang to see the difference in the risk
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intensities for the hidden risk situations if wetis the complete analysis on different regions as
the data set consists out of 60& US data and 40%sadzurope, Asia, and Canada. Even to
control for the economic effects would be beneficlhis can be done by allowing the DCMM
to depend on covariates, what unfortunately wowdd|to an increase of the amount of
parameters to estimate. Given the high amount taf mkeeded for each of the topics and in order

to ensure the estimation quality, this can notdn @f this research with the current data set.

4.3 Time dependent occurrence of the hidden states

As described earlier, the hidden states might Ineedrand influenced by several dimensions,
such as the economic cycle and other exogenoust®ffeor each sequence of observations, the
most likely sequence of hidden states, known ad/ttexbi path, can be estimated. In order to
see the evolution of the hidden states in previgears, Picture 1 shows the hidden state
distribution across the observation period. Th&rdbution confirms that the most likely state
will be the first hidden state. Interestingly, 18917, credit rating transitions were as likely to be
driven by the third hidden state as by the firgidein state in the underlying database. Starting in
1998, the second and third hidden states begatheimate in terms of their influence on the
process every two years; every two successive yeans dominated by one or the other hidden
state. In other words, the migration volatility fnighave been higher and influenced by the
second hidden state in 1998, 1999, 2002 and 204d8itiAnally, the speculative grade issuer
was more likely to upgrade, whereas the investrgeade issuer faced a rating deterioration. In
1997, 2000, 2001, 2004 and 2005, however, the thdden state dominated the second hidden
state. Particularly in combination with the nornfisst hidden state, the transient behaviours
were more stable and less volatile during thesesyedgain especially with these timely
information the economic background of the hiddiescan not be tackled in this research but

becomes more and more interesting. Starting frora lhevould really be interesting to run the
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models on different time periods of data to see bwmvhidden states and their probability mass
behave. Again, unfortunately so far the data sanmpléoo small to get reliable and high

gualitative estimates.

4.4 Validation
In order to prove that the second order transiehapiour of the hidden states is not caused by
spurious correlation, | calculated Cramer’'s V stati (see Cramer 1999) for the hidden
variables. It is a measure for the association éetwariables. The closer Cramer’'s V is to zero,
the smaller the association between the hiddemmmias is. Here the three hidden states (with a
value of 0.1256) do not depend very strongly orheatber, which deflate any suspicion of a
spurious correlation between the transition matrioé the second and third hidden states
stemming from the correlated hidden states theraselv

Now that the inherent correlation structure and thensient property have been
examined, it is important to investigate the estiamaaccuracy of the DCMM. To this end,
Theil’'s U, which is the quotient of the root meajuared error (RMSE) of the forecasting model
and the RMSE of the naive model, will be calculategle Theil 1961). Hence, the results are
compared against the "naive" model, which consi$ta forecast repeating the most recent
value of the variable. The naive forecast is a oamavalk specified as:

Y, =Y, +& Wwhere g ~i.id. N(O,O'Z). (11)
Behind this notion is the belief that if a foredgagtmodel cannot outperform a naive forecast,
then the model is not doing an adequate job. Aenaiedel, predicting no change, will give a U
value of 1, and the better the model, the closezil'BhU will be to 0. For the DCMM it is
computed for the hidden states, resulting in aevafi0.0327, as well as for the observable
variable, where | obtain a value of 0.0093. Botluga indicate that the DCMM fits the data set

nearly perfectly regarding the observable varialded, even more importantly, the hidden
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states as well. This should also be taken as es#denh the high explanatory power of the
DCMM. In contrast, the single HMM with it's threedden states performs much worse, with a
value of 0.9021, which is nearly a completely najuess. The value for the observed variables,
0.5551, is tremendously better but is still farslescurate than the one given by the DCMM.
These differences clearly show that the DCMM'’s ety of allowing dependence structures
between the observations should be consideredimatg transition probabilities. This is not

surprising, since this fact was already shown leyMC_2.

45 Out-of-sample performance

In order to ensure that these relationships aretietresult of spurious correlations, the
calculations should be repeated with both an otgaofiple and an in—the-sample data set. As
can be seen in Table 1, the number of parameteareedfiC_2 and DCMM_3 2 1 are too high
to obtain unbiased estimates on the resulting ssné@lsamples.

A robustness check to prove the complex correlasimacture itself is conducted with
random numbers, once generated with serial coigalahind once without. The serially
correlated random numbers are calculated as

Y = ((0) ¥y )+ (v ) (12)
where p denotes the correlation coefficient and is assutodoe 40%. The random numbers
themselves are assumed to be normally distributeldage scaled into the same 8 state rating
scale{lZ,... ,8} used in the original rating data. In order to mel@mmparable to the real rating
data, the number of components in the log likelthoeeds to be the same. Therefore, for each
company, a random start rating is simulated. Afegds, each company is assigned a sequence
of random numbers equal in length to the numbeatifig observations in the original data set.
Thus, the sample structure remains the same & iortginal data. In the case of uncorrelated

random numbers, the MC_1 performs best in termt@fAIC and BIC. In contrast to serially
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correlated random numbers, the MC_2 clearly béwtsviC_1, which supports the idea that the
MC_2 fits a simple serial correlated data set bastsupposed with the rating drifEven the

DCMM_3_2 1 supports this idea, since the AIC an@ Bkat the MC_1 but interestingly not
the MC_2. On the other hand, the calculation basethe real rating data looks different, i.e.
favours the DCMM_3_2 1 and hence confirms thatctireelation structure in real credit rating
data is much more complex than assumed and thahéneory is not best captured by simply

taking the combination of the current and previ@isggs into account.

Deriving the final matrix

As previously shown, the memory information and trasition probabilities of the hidden
states are spread over three transition probabigyrices. At this point, the optimal way to
handle the information would be a tractable mainixthe standard 8x8 dimension with the
inherent transient and serial correlation structlicederive such a matrix, a weighting approach
is introduced. This approach is also feasible fr DCMM model information calculated in
other areas (e.g. it is well known that the ratindt in Structured Finance is also evident and
even stronger; see Cantor and Hu (2003)). The tneguinatrix should approximate the non-
stationary process and preserve its memory infoomatSince the rating migration process
follows a non-homogeneous process, the new maitiailso be based on a non-homogeneous
process. The new non-homogeneous transition pridyatiatrix’s first column would contain
not only the current stateX, ) but also a functional relationship of the riskeimsities in various
possible risk situations. The following informaticere needed: the individual transition
probability matrix{P,,P,,...,P,} for each of the hidden statés,...,h_ (see Tables 4-6), the
second order transition probability matrix of thielden states (see Table 3) and information

about the relative occurrence of the hidden statesss the rating classes (see Table 9). Since

5 In support of the idea that the MC_2 captures irsprial correlation structures, BIC and AIC sigrifitly increase if the
calculations were based solely on random numbeteui any serial correlation.
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the second order transition matrix of the hiddextesis used, memory is added to the process by
allowing the future state to depend on the riskadions of the current and previous period.
After the inputs are defined, the weighting applogcinitiated by multiplying the elements for
each hidden state of the second order transition obahlity = matrix
ph ., = P(Hi :io|Ht_| =i, Hy :il) by the corresponding relative occurrence frequency
of the respective hidden staterf; = P(Xt :iO|Xt_1 = il). For m hidden states, it results m
column vectors \{) of size m™. The resultingm vectors {¥) are then summed together as
m
VW =3}V, , where each element in the row vector is denotefl,av,,vs,...,v, } . Again, the
new velctor has the siz@™ and is next divided sequentially intobuckets of sizen starting
from the first entry,. Now each bucket contain® entries, which are then summed together
and denoted a#,. These will be the weighting factors for the titioa probabilities of the
respective hidden states, wherg corresponds to the first hidden stai®,corresponds to the
second hidden state and so {m,,@,,...,@,}. Finally, the entries of the new matrix are
calculated as the product of the weighting factimrsthe respective hidden state times the
corresponding entries of the respective transiicbability matrix{Pl, P,....,P } and are then

ay

summed together.

Prss, =@y Py t @, Py +...t @, P, (13)
This is done for every entry in the new matrix. &y, to ensure a row sum equal to one (as
prescribed by the property of a stochastic mateagh of the matrix’s entries is divided by its
respective row sum.

For purposes of illustration, let’'s consider ouseavith three hidden states and a situation
in which it retains a rating GAAA For the first hidden state, | start by multiplyirach element
of the first column oph, = P(Ht :i0|Ht_l,Ht_2) of the second order transition probability
matrix for the hidden states by the relative fraguyeof the first hidden state for rating grade
AAA(0.7318) and by the transition probability of tespective matri¥1 (0.8677). This results

in the vectorV, ={0.5668492, 0.4402336, 0.610028, 0.6349829, 0, 68600.6349829, 0, O}
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This is repeated for the remaining two hidden stateorder to obtain two further weighted
probability vectors, withVv, ={0, 0, 0, 0, 0, 0, 0, O, O} and/, ={0.0212899, 0.0443077,
0.0071099, 0, 0.1986, 0, 0, 0.1986, 0}'. In thetrsep, the three vectors are summed together,
resulting in vectorVW={0.5881391, 0.4845413, 0.6171379, 0.6349829, (1980000635,
0.1986, 0}. Since we have 3 hidden states, théoveéW is split with its 9 entries into three
buckets containing three entries each. The entfiesich bucket are then summed together and
divided by the total vector sum ®W. Now we have three weighting factors for the retipec
hidden statesw, = 0.436769 @, =0 and w, = 0. 248308 In the last step, the weighting
factors are each multiplied by the respective ftems probability of the corresponding
transition probability matrixP, — P, and then finally summed together. The derivedsitam
probability expresses the weighted probabilityra tinal matrix, which is in our example equal
to (=0.436769*0.8677 + 0*0 + 0.248308*1 = 0.68508).

The final matrix (Table 10) exhibits the informatiof the transient behaviour of all three
hidden states and the inherent serial correlatizure to the second hidden state, the main
diagonal shows lower probabilities than MC_1, thatnm for hidden state oneéP{) and for
hidden state thred”B). The probability mass is shifted by the secoratian state from rating
stateAAAto stateA, towards a lower rating grade and from ratingestBBB to CCC towards

better rating states. This again is the idea ohtbger characteristic.

4.6 Economic impact

After analyzing the transient behavior of credtirrg migrations and their inherent correlation
structure, it is important to obtain informationoaib the economic impact. Since the class of
reduced form models uses migration matrices amnai® input, | conduct the analysis using the
CreditMetrics model. Because the economic impactrafsition probabilities with memory

information from the successive risk situationsofsmajor interest, a uniform correlation
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structure is assumed. Regarding Gupton (1997),cthveelation is set equal to 0.20, which
should be a reasonable value. The LGD is set dquéb%. The value of the loan in one year
for each rating is then computed as

V, = EAD, » gl-(r+cs ) (14)
wheret denotes the time and is set equal to one yedenotes the riskless rate, which is
assumed to be 3%, and the EAD denotes the comntitrhbe credit spread with PD as the
probability of defaulsis denoted by CS and calculated as:

CS, =-(In(1- PD,))/t (15)

| set up a hypothetical portfolio consisting outs®0 obligors with a total value of €500
Mio. For simplicity’s sake, the single exposures assumed to be uniformly distributed with a
net commitment of €1 Mio, and each obligor has amg loan. In order to be as realistic as
possible, | apply a hypothetic rating compositiakein from a large German bank portfolio. It
consists of 1.2% exposure in rating class AAA, 9i8%AA, and 16.4% in A, 41.8% in BBB,
27.2% in BB, 3.4% in B and 0.4% in CCC.

To obtain information regarding the economic imp#oe simulation is conducted once
with the matrix estimated by the MC_1 and once witle finally derived matrix. The
simulations clearly show that the MC_1 overestimdbe risk compared to a simulation based
upon the information provided by the DCMM. Basedaononfidence level of 99.0% (99.9%),
the simulation conducted with the matrix from th€CM allocates a CVaR of €18,915,573
(€20,957,447), while the one generated by the lfindérived matrix, including the inherent
information of the DCMM, allocates a CVaR of €1%r1 (€16,806,754). This result is in
line with the observation that three different r@tuations are obviously driving the transition.
The first, most dominant hidden state shows asigkation similar to the one proposed by the
MC_1. The second hidden state is clearly movingclvinesults in a higher migration risk, but
since the portfolio composition consists of 72.88ngs belowA and the second hidden state

shows an upgrade trend, the result is very reasenéib other words, within this portfolio
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composition, the second hidden state reducesghdy moving to upgrade rating qualities. The
third and even more likely state reduces the migmatisk, since it is an absolute stayer state.
Overall, it results in a lower risk situation aaim by the lower CVaR. Even if | assume that
the exposures are equivalently distributed acresgdting states, the MC_1 still overestimates
the risk. In this case, for a portfolio with thensa face value and the simulation based on the
MC_1 matrix, | obtain a considerably higher CVaR&£96,557) compared to the one based on
the information from the DCMM (€33,864,380).
In order to see what impact these transition pri@s might have under different

correlation assumptions, | simulate the CVaR with different correlations 0.1, 0.3 and 0.4
again. Even with these different correlation assimng, the MC_1 clearly overestimates the

risk based upon the rating observations withirtitne period between 1994 and 2005.

5 Conclusions

Credit rating transition probabilities are commondgtimated by a discrete time time-
homogenous Markov chain. A large set of non-Mar&ovibehaviors has already been
discovered and unequivocally acknowledged in ttezdture. One very popular behavior is the
so-called rating drift.

The goal of this paper is to overcome these norkMaan behaviors, to analyze and account
especially for the truth serial correlation andfital out what really influences the transition
probability without restricting the estimation byyalimiting assumptions and restrictions. |
introduce two new models into the credit ratingnsifion estimation area, the Mixture
Transition Distribution model (MTD) and the Douliléain Markov Model (DCMM). The two
new models performs and fits the transient behavadwa representative credit rating data set
best compared with the most commonly used modelgrins of AIC and BIC the MTD clearly

outperforms the standard Markov chain (MC_1) but tiee second-order Markov chain
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(MC_2). In light of the resulting sparse matrix rfrothe MC_2 and the high number of
parameters it requires, the Mixture Transition Blisition model is preferable. The DCMM
beats every other model setting and furthermoreogliers and emphasizes the true character of
credit rating transitions. It is thereby obviouattthe transition probability from one observation
period to the next is not well captured by meradpking at a certain point in time and
considering the frequencies of transitions oneqggelater, as is done in the standard discrete
time Markov chain. The underlying process is atyudliven by three completely different risk
situations determined by three hidden states idstéaan average over the whole observation
period. Each risk situation is determined by iividual risk intensity as shown in this analysis
by a complete transition probability matrix. Thesfiand most probable hidden state can be
summarised as a normal risk state with transitioobgbilities similar to the ones already
known. However, the second hidden state can be asem “mover state” with a complete
reversal trend depending on whether the obligoaied in an investment grade area or in the
speculative grade area. If an obligor is rated &ipeculative grade rating, an upgrade trend is
to be expected, whereas in the investment grade Hre corporation would face a downgrade
of its rating. The third hidden state is a verybta'stayer state” in which no migration risk
seems likely. In this sense, the commonly assunmeé-lhomogeneous assumption is clearly
rejected underlined with additional information aeding how and where these assumptions do
not hold. The serial correlation assumed by thd-kedwn rating drift is as one component of
the memory clearly confirmed. Therefore the memaira credit rating transition process is
determined by the combination two successive riskasons with possible different risk
intensities along with their two successive ratoiggervations. To combine the information of
the process with three risk situations into onenditeon probability matrix, a weighting
algorithm is introduced to incorporate the inforroatfrom the DCMM output. The resulting
matrix should be much more able to capture the traasient behaviour of credit rating

transitions. Furthermore, several CVaR simulatibased on this weighted matrix and the
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standard matrix shows that in light of risk capitgpending only on the current observation
period, credit risk is clearly overestimated. Alongth these new perceptions this analysis
leaves and open questions for further researchecedly in the field of explanation and
economic justification of the hidden states, theduaccuracy measures under the condition of a
high amount of parameter. Once, when a sufficiengldata history exist, a real out of sample
test should be conducted on these models.

As a consequence of this research the rating itealf carry predictive power for the
time of issuance and one year after but the esomaif the rating migration in the future
becomes quit hard if no information of the actusk rsituation is available. This has a direct
impact in the validity of given credit ratings dugithe time and furthermore rise the question of
how accurate are the methods of deriving a cretiitg. The hidden risk situations may directly
impact the rating determination. In other wordslestst the factors driving the hidden risk
situations should be captured in the models whinplesize the need to understand the factors

driving the hidden states.
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Table 1. Qualitative performance of the models

The performance and the fit of the different modlsthe data is determined by the accuracy meadares
likelihood, AIC and BIC. Here MC_# denotes the g Markov Chain with order of # and HMM_# # ae th
hidden Markov Model with # number of hidden stdtea # order dependency. The Double Chain Markodehis
denoted by DCMM with # hidden states in # orderagefency with an output in a # dimension.

Parameter Log Likelihood AIC BIC
Independence model 7 -105,948 211,911 211,974
MC_ 1 42 -34,063 68,211 68,589
MC_2 128 -31,391 63,038 64,19
HMM_2 1 17 -79,643 159,322 159,475
HMM_3 1 29 -73,244 146,547 146,808
HMM_3_2 47 -70,56 141,216 141,639
MTD_2 42 -32,837 65,758 66,136
DCMM_2 2 1 91 -32,676 65,535 66,354
DCMM 321 152 -29,072 58,449 59,817
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Table 2: First hidden state distribution 7z, and the conditional distribution 77, of the second
hidden state

This table shows the probability of which of theett hidden states might be the starting st@ten the rating
sequence of each obligor and the conditional distion 77,, of the further hidden states in the process gthen
first hidden state.

state distribution States 1 2 3
T 1 0.6623 0.0351 0.3027
1 0.9533 0.006 0.0407
T, 2 1 0 0
3 0.6929 0 0.3071

31



Table 3: Second order transition matrix of the hidden states

This table shows the transition probabilities of thidden states in a second order dependencystucticating
how likely one of the three hidden states will neeg the current one and the previous one.

t+1 t+1 t+1
t-1 t0 1. hidden state 2. hidden state 3. hidden state
1 1 0.8927 0.0001 0.1072
2 1 0.6933 0.0837 0.2231
3 1 0.9607 0.0035 0.0358
1 2 1 0 0
2 2 0 0 1
3 2 0.0001 0.9999 0
1 3 1 0 0
2 3 0 0 1
3 3 0 1 0
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Table4: DCMM_3 2 1 Transition Probability Matrix for hidden state 1

This table shows transition probabilities calcutaby the DCMM for the first hidden state based dB&P issuer
rating history for 1994 to 2005.

AAA AA A BBB BB B CCC Default
AAA 0.8677 0.1249 0.0057 0.0016 0.0000 0.0000 (0000 0.0000
AA 0.0040 0.8988 0.0897 0.0053 0.0005 0.0015 0.00000.0002
A 0.0009 0.0212 0.9076 0.0649 0.0028 0.0009 0.00070.0009
BBB 0.0002 0.0021 0.0378 0.9031 0.0437 0.0074 ®002 0.0029
BB 0.0002 0.0015 0.0023 0.0468 0.8570 0.0697 0.00960.0128
B 0.0000 0.0007 0.0033 0.0037 0.0538 0.8435 0.04260.0524
CCcC 0.0000 0.0000 0.0024 0.0000 0.0071 0.0737 6.681 0.2355
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .00(D 1.0000
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Table5: DCMM_3 2 1 Transition Probability Matrix for hidden state 2

This table shows transition probabilities calcullaty the DCMM for the second (“mover”) hidden sthtesed on a
S&P issuer rating history for 1994 to 2005.

AAA AA A BBB BB B CccC Default
AAA 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0000.
AA 0.2121 0.0023 0.782 0.0036 0.0000 0.0000 0.0000 0.0000
A 0.0000 0.3664  0.0000 0.6336 0.0000 0.0000 0.0000 0.0000
BBB 0.0000 0.0000 0.6566 0.0004 0.3428 0.0000 0.0000 0.0002
BB 0.0000 0.0000 0.0023 0.7208 0.0000 0.2769 0.0000 0.0000
B 0.0000 0.0000 0.0000 0.0000 0.5348 0.0000 0.4539 0.0113
CCcC 0.0000 0.0000 0.0000 0.0000 0.0106 0.819¢ 0.0952 0.0743
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .00 1.0000
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Table6: DCMM_3 2 1 Transition Probability Matrix for hidden state 3

This table shows transition probabilities calcutaby the DCMM for the third (“stayer”) hidden stdtased on a
S&P issuer rating history for 1994 to 2005.

AAA AA A BBB BB B CccC Default
AAA 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0000.
AA 0.0016 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A 0.0000 0.0000  1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BBB 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
BB 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
B 0.0015 0.0000 0.0000 0.0000 0.0022 0.9961 0.0000 0.0002
CCcC 0.0000 0.0000 0.0000 0.0245 0.0000 0.047( 0.9285 0.0000
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .00GD 1.0000
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Table7: MC_1 Transition Probability Matrix

This table shows transition probabilities calculases usually by a discrete homogeneous time Mackain based
on a S&P issuer rating history for 1994 to 2005.

AAA AA A BBB BB B CCC Default
AAA 0.8402 0.1543 0.0043 0.0012 0.0000 0.0000 (0000 0.0000
AA 0.0161 0.8617 0.1163 0.0043 0.0004 0.0011 0.00000.0001
A 0.0007 0.0399 0.864 0.0912 0.0022 0.0007 0.0005 .o00¥
BBB 0.0002 0.0017 0.0705 0.8599 0.0568 0.0061 @L002 0.0024
BB 0.0002 0.0013 0.0021 0.0736 0.8304 0.0730 0.00830.0111
B 0.0001 0.0006 0.0029 0.0033 0.0622 0.8339 0.05000.0469
CCC 0.0000 0.0000 0.0020 0.0020 0.0068 0.1191 @.664 0.2057
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .00(D 1.0000
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Table 8: Deviation in percentage from the corresponding future rating grade calculated with
MC_1

This table provides an overview regarding to therall trend to migrate from a given rating to ataer rating class
for the three matrices from the hidden states aedinally derived matrix. Hereby each column prhobey mass
from each of the four matrices is compared to &spective one estimated by the MC_1.

AAA AA A BBB BB B CCC D
DCMM hidden state 1 1.81 -0.97 -1.25 -0.98 0.64 -3.60 1.58 2.98
DCMM hidden state 2 -75.27 29.18 35.67 31.18 -7.36 6.08 -24.32 -14.29
DCMM hidden state 3 16.98 -5.77 -5.85 -1.06 4.53 0.89 27.96 -21.05
final matrix -9.85 1054 1398 14.45 2.66 1.85 5.99 -6.10
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Table 9: Relative Frequency tablerating distribution across the 3 hidden states

The table shows the relative occurrence frequenzigbe hidden states for each rating during theeolation
period from 1994 to 2005.

1. hidden state 2.hidden state 3. hidden state
AAA 0.7318 0.0697 0.1986
AA 0.7934 0.065 0.1416
A 0.8118 0.0679 0.1204
BBB 0.872 0.0645 0.0636
BB 0.9126 0.0473 0.0401
B 0.9338 0.0274 0.0387
CCcC 0.874 0.0963 0.0297
Default 0.9941 0.0059 0.0000

38



Table 10: Final Matrix derived from the three hidden states

The transition probability matrix is derived thrdug weighting approach to keep as many informatfatihe serial
correlation and the transient characteristic oflitreating histories from the DCMM as possible. Tiansition
probabilities are derived out of the second ordamdition probabilities of the hidden states, thgpective relative

frequencies of each hidden state for each ratiglegrand the corresponding transition probabilifiesn the
respective hidden state transition probability matr

AAA AA A BBB BB B CCC Default
AAA 0.6690 0.3270 0.0031 0.0009 0.0000 0.0000 (00000 0.0000
AA 0.0816 0.6675 0.2463 0.0035 0.0003 0.0008 0.00000.0001
A 0.0005 0.1192 0.6796 0.1978 0.0015 0.0005 0.00040.0005
BBB 0.0001 0.0011 0.2122 0.6760 0.1037 0.0039 ;001 0.0016
BB 0.0001 0.0008 0.0017 0.2283 0.6606 0.0966 0.00510.0068
B 0.0006 0.0004 0.0017 0.0020 0.1613 0.6543 0.14950.0303
CCC 0.0000 0.0000 0.0013 0.0101 0.0061 0.2506 8.587 0.1441
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .000D 1.0000
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Figure 1: hidden state distribution acrosstheyears

This picture shows the hidden state distributiopéncent over the observation period 1994-2005.fidwiencies
of the hidden states are derived for each obligatiag history through the Viterbi algorithms.
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