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1 Introduction

The worldwide shift from pay-as-you-go to privately funded pension systems accompa-

nied with the swing from defined benefit schemes to defined contribution plans transfer

both investment risks and responsibility to millions of individual investors. From the

perspective of private investors choosing the right asset allocation seems to be an oner-

ous task. For instance, Rooij, Kool, and Prast (2007) find in an empirical analysis

that households consider themselves financially unsophisticated and are not willing to

take control over their retirement assets.1 According to Huberman, Iyengar, and Jiang

(2004) there exists a strong negative correlation between the number of funds offered in

self directed 401 (k) pension plans and the 401 (k) participation rate. Since individual

plan participants do not seem to understand the risks associated with the various asset

allocation options the present paper aims to derive optimal asset allocation rules which

could serve as default options for defined contribution plans. Beshears et al. (2006)

find a tremendous impact of default options on the outcome of retirement wealth since

financially unsophisticated investors stick to the default option to circumvent serious

investment mistakes.

The default portfolio strategy has to be adequate for a broad range of participants

from a welfare perspective and feasible from the viewpoint of pension plan providers

such as banks, insurance companies, mutual funds, and employers. In order to be prac-

ticable to implement from the plan provider perspective we impose that the optimal

investment strategy only depends on the age and the risk aversion of the plan partic-

ipant. Such a life-cycle strategy seems to be appealing for a variety of reasons. The

simplicity ensures that administrative costs of the plan sponsor are small even if it is

implemented for a large number of plan participants. Further, transaction costs are

1Also psychological studies by Tversky and Shafir (1992), Shafir, Simonson, and Tversky (1993)
as well as Iyengar and Lepper (2000) which report that households are inclined to postpone decision
making when the complexity of tasks rises.
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kept at a minimum and excessive active trading is avoided.2 From the view of plan

participants the static life-cycle strategy is transparent and easily comprehensible since

they ex-ante know which asset allocation will be held at future dates. As a result, par-

ticipants can also easily compare different static life-cycle strategies. Life-cycle mutual

funds are one of the most successfully growing segments of the mutual fund industry in

the U.S. The assets under management have grown rapidly from $1 billion in 1996 to

$120 billion in 2006 (Viceira, 2007). Remarkably, president George W. Bush has out-

lined a plan in which workers can invest a portion of their payroll taxes into personal

accounts in exchange for a cut in Social Security benefits. One investment option of

these personal accounts is the life-cycle portfolio.

We have to mention that recent theoretical portfolio choice studies document that

rational investors should trade actively according to stochastic changes of the invest-

ment opportunity set.3 Cairns, Blake, and Dowd (2006) specifically derive the optimal

dynamic asset allocation for defined contribution plans. The derived stochastic life-cycle

strategy exhibits large fluctuations in asset weights over time since hedge demands are

reacting commensurately to the stochastically varying investment opportunity set. It

also exhibits high leveraged stock positions in the beginning of the accumulation plan

since rational investors perceive their human capital as an implicit bond portfolio. The

study also finds that a static life-cycle strategy is significantly suboptimal compared to

its stochastic counterpart. Cocco, Gomez, and Maenhout (2005) provide contradictory

theoretical evidence that utility losses of static life-cycle strategies are vary small com-

pared to the dynamic optimum even theough they do not optimize the static life-cycle

rule. After all, it also seems doubtful whether individual pension plan participants are

2Barber and Odean (2000) find empirical evidence that active trading reduces the investment per-
formance of households substantially due to transaction costs and Carhart (1997) finds the same result
for actively managed mutual funds.

3For instance, the impact of interest rate risk on hedge demands has been analyzed by Brennan and
Xia (2000) and by Wachter (2003), risky inflation by Campbell and Viceira (2001) and Brennan and
Xia (2002), and for changing risk premiums see Brandt (1999), Campbell and Viceira (1999), Wachter
(2002), and Campbell, Chan, and Viceira (2003).
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qualified enough to understand optimal stochastic asset allocation strategies and are

willing or allowed to invest into highly leveraged stock portfolios. Another strand of

literature explores the risks associated to typical life-cycle asset allocations rules by

simulating the outcome of retirement wealth via historical simulations. Poterba et al.

(2005) use historical simulations to draw the distribution of 401(k) retirement wealth

for a large number of households and Shiller (2005) uses 134 years of stock return data

for various countries to simulate the outcome of life-cycle personal accounts.

While previous studies did not optimize the static life-cycle asset allocation rules

explicitly we show how static life-cycle strategies can be optimized in a model with

stochastically varying investment opportunity set. We set up a continuous time asset

model which reasonably captures the empirical evidence of multi decade stock market,

interest rate and inflation rate movements and derive the optimal investment schemes

for CRRA plan participants which contribute a certain fraction of their labor income

to a pension plan. Since the resulting static life-cycle strategy evolves deterministically

over time it somehow captures the average development of the investment opportunity

set over time but not the actual state of nature. The strategy exhibits declining equity

exposures until retirement, so as to maintain the optimal stock fraction of total wealth

which includes financial wealth and the present value of future contributions. This result

conforms to recent life-cycle asset allocation studies (e.g. Cocco, Gomes, and Maenhout,

2005) and is similar to popular life-cycle rules suggested by financial advisors or finance

books (Malkiel, 1996).

In order to evaluate the risk associated to the derived optimal static life-cycle strate-

gies we conduct a Monte Carlo analysis to derive distributional properties of terminal

wealth in real terms and of equivalent annuities payments assuming that terminal wealth

is converted into a life-annuity at retirement age. We use the optimal strategy as a

benchmark in order to compare long term investment schemes typically found in prac-

tice such as the constant mix strategy, the ”100−age” life-cycle rule, and the static as
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well as dynamic portfolio insurance strategies. This allows us to assess the degree of

efficiency of these investment schemes compared to the optimal life-cycle strategy. To

this end, we perform a welfare analysis based on Monte Carlo sampling for the various

strategies, ages, and risk aversions.

The remainder of the paper is structured as follows. In Section 2 we describe the

asset model, its calibration, and derive the wealth evolution equation. Section 3 derives

and discusses the optimal life-cycle strategy. In Section 4 we conduct a Monte Carlo

analysis in order to create projections about potential outcomes of terminal wealth and

pension income. A welfare analysis is also undertaken to compare various practicable

asset allocation strategies relative to the optimum, before Section 5 concludes.

2 The Asset Model

2.1 Stock and Bond Market

This section is concerned with the main long term investment risk factors which private

investors have to cope with: stock market price risk, interest rate risk, and inflation

risk. All considered risk factors are captured by separate stochastic diffusion processes,

each of which can be potentially correlated. The value of the stock market S is assumed

to evolve according to

dSt = (rt + σsλs)Stdt + σsStdZ
S
t , (1)

where rt denotes the short nominal interest rate, σs is the instantaneous standard

deviation of stock returns, λS > 0 represents the market price of equity risk, and ZS

is a Wiener process. So, we assume that the instantaneously expected stock return

is the sum of the prevailing interest rate and the constant risk premium. This way of

modeling ensures that the expected stock return never drops below the risk-free interest

rate.
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The continuous nominal short rate process is given by Vasiceks (1977) term struc-

ture model

drt = κr(θr − rt)dt + σrdZ
r
t , (2)

where θr denotes the long run mean, κr represents the parameter of mean reversion and

σr is the volatility of the short rate. Mean reversion gives the interest rate a tendency to

move back to the long run mean θr, where the speed factor κr indicates how strong the

force of mean reversion is. The increments of the standardized Wiener processes dZr
t

and dZS
t are instantaneously correlated with ρSr, which reflects the empirical evidence

of interdependencies between stock returns and interest rates. The value process of the

money market account Kt is given by

dKt = rtKtdt. (3)

To model the dynamics of the bond portfolio, we take advantage of the direct relation

between the movements of the risk-free term structure and bond returns. The dynamics

of the value of the risky bond portfolio B with a given modified duration D = ∂B
∂r

1
B

follow endogenously from the assumption of the Vasicek model with

dBt(D) = (r + σB(D)λr)Btdt− σB(D)BtdZ
r
t , (4)

where λr > 0 is the market price of interest rate risk and σB(D) = σrD is the instanta-

neous volatility of the bond portfolio.4 Again, the expected return of risky bonds will

always be higher than the current riskless interest rate. For the correlation between

stocks and bonds it holds that ρSB = −ρSr. The (instantaneous) variance-covariance

4The same approach to model the price process of a bond portfolio is used by Munk, Srensen, and
Vinther (2004).
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matrix of stocks and bonds is therefore given by

Σ =

 σ2
S σS σB ρSB

σS σB ρSB σ2
B

 . (5)

The term structure of zero bond prices in t with maturities τ > 0 is given by

P (t, t + τ) = e−a(τ)−b(τ)rt , (6)

with

a(τ) = R(∞)(τ − b(τ)) +
σ2

r

4κ
b(τ)2,

b(τ) =
1

κ
(1− e−κτ ),

R(∞) = θ +
σrλr

κ
− 1

2

σ2
r

κ2
,

where R(∞) denotes the nominal interest of a zero bond with infinite maturity. De-

pending on the parameter, the Vasicek term structure model can reproduce all types

of empirically observed term structures, i.e. normal, inverse and humped.

2.2 Inflation Risk

We model the inflation rate explicitly because the effect of uncertain inflation becomes

especially important when we consider multi-decade investment horizons. We assume

that the nominal price level of the consumption good evolves according to

dQt = ie,tQtdt + σQQtdZ
Q
t , (7)

with ie,t as the expected rate of inflation an σQ the volatility of the unexpected inflation.

The change in the price of the consumption good is correlated with the stock price and
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the interest rate with ρSQ and ρrQ, respectively. The expected inflation rate itself is

assumed to follow the Ornstein-Uhlenbeck process

die,t = κi(θi − ie,t)dt + σidZ
i
t , (8)

where θi describes the long run mean, κi represents the degree of mean reversion, and

σi the volatility of the inflation rate. The correlations between dZS
t , dZr

t , dZQ
t and

dZ i
t are denoted by ρSi, ρri, and ρQi. This way of modeling the price process of the

consumption good reflects that expected inflation rates are mean reverting over time

which is commensurate to empirical evidence. The result is that possibly there can

be long periods with above average inflation rates and below average inflation rates.

Further, expected inflation rates and interest rates are correlated which is in line with

empirical evidence.

2.3 Calibration of the Asset Model

We use maximum likelihood estimation to calibrate the model parameters to monthly

total return data of the MSCI World performance index, German zero bond spot rates

with maturities τ = 1, 2, ..., 10 years, and the consumer price index from January 1975

to December 2004 (360 observations). The results of the estimation are reported in

Table I. By using the MSCI World performance index we assume that the portion of

funds invested in stocks is internationally diversified. The filtration of the short-rate

and expected inflation is done by applying the Kalman Filter (Figure (1)).5 We set the

modified duration of the bond portfolio to D = 4.5 so that the expected excess return

λrσB is 1.3 percent and volatility σB = Dσr is 3.9 percent. The expected stock excess

return λSσS and the volatility σS are 5.9 and 15.8 percent, respectively. As expected,

the correlation between the expected inflation rate and the interest rate is significant

5For the application of the Kalman Filter to the calibration of the Vasicek model we use the
approach of Babbs and Nowman (1999).
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Figure 1: Filtered Short Rate and Expected Inflation Rate. The figure exhibits the
filtered annualized short rate and inflation rate computed with the Kalman filter. The
estimation uses monthly data from January 1975 to December 2004 (360 observations).
Historical data about the interest rate term structure with maturities τ = 1, 2, ..., 10
years and the development of the consumer price index in Germany are taken from the
website from the German Central Bank (Bundesbank).

with 57.8 percent. The estimated long run mean of the expected inflation rate θi is 2.4

percent while the long run mean of the nominal short rate is 4.44 percent so that the

real short rate is on average around 2 percent.

3 Optimal Life-Cycle Strategy

3.1 The Wealth Evolution

Having described the risk factors of the economy, we now turn to the evolution of

retirement wealth. We assume that the investor can invest in the stock market, a bond

portfolio with duration D, and the money market. The process of the of the plan
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Table I
Kalman Filter Estimates of Asset Model Parameters (in Percent)

Stocks Bonds Interest Rates Inflation Correlations
(D = 4.5) S r Q i

λSσS 5.80 λrσB 1.30 θr 4.44 θi 2.40 1 -5.31 -6.75 0.26
σS 13.58 σB 3.87 σr 0.86 σi 1.30 1 5.16 52.48

κr 8.07 κi 47.4 1 16.41
λr 33.54 σQ 1.01 1

Note. This table reports the (annualized) estimates for the stochastic processes of
stocks, bonds, interest rates and inflation. The estimation uses monthly data from
January 1975 to December 2004 (360 observations). As a proxy for the stock portfolio
we use the return series of the MSCI World performance index. Historical data about
the interest rate term structure and the development of the consumer price index in
Germany are taken from the website from the German Central Bank (Bundesbank).

member’s nominal wealth is

dF n
t = (rt + π′tσλ)F n

t dt + π′tσF n
t dZt + ct dt, (9)

where λ = (λS λr)
′ is the vector of market prices of risk, σ results from the Cholesky

decomposition Σ = σσ′, and dZt = (dZS
t − dZr

t )
′. The vector of risky asset portfolio

weights at time t is denoted by πt = (πS
t πB

t )′ , where πS
t and πB

t reflect the fraction of

retirement wealth invested in stocks and bonds, respectively. Accordingly, the fraction

invested in the money market is given by πC
t = 1 − π′t1. The investor continuously

contributes a deterministic amount ct to the retirement wealth account. We assume

that the contribution is 4 percent of a typical employee’s current earnings.6 To this end,

the average earnings profile of an average German employee with vocational training

(Figure (2)) is taken from Fitzenberger et al. (2001). Further, we assume that the

term structure of nominal income rises at 2 percent per year. This increase in nominal

income is chosen conservatively in the way that it compensates for the average increase

of the price level. We abstract from stochastic fluctuations of contributions in order to

6The size of 4 percent is based on German regulations of funded individual retirement accounts
(called Riester accounts) which require that from 2008 on 4 percent of income has to be contributed
in order to become eligible for the entire tax subsidies.
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Figure 2: Average Life-Cycle Earnings Profile. The profile is taken from Fitzenberger et
al. (2001) for employees without high school degree but with formal vocational training.
Earnings at age 25 are set to 30 thousand EUR per year which is in the line with the
average earnings of German employees according to the income survey from the Federal
Statistical Office of Germany in 2005.

focus on the investment return risks. Cocco, Gomes, and Maenhout (2005) report that

utility costs from ignoring labor income risk are small since the main effect remains in

the discounting of future labor income. The investor’s nominal augmented wealth W n
t

consists of the financial wealth F n
t and the present value of future contributions Hn

t .

The latter is given by

Hn
t =

∫ T

t

csP (t, s− t) ds, (10)

where P (t, s− t) is the price of a zero coupon bond in t with maturity τ = s− t from

equation (6). Hence, the present value of future contributions is equal to a coupon

bond with duration DH,t =
∫ T

t
cs

∂P (t,s−t)
∂rt

ds and dynamics

dHn
t = (rt + σH,tλr)H

n
t dt− σH,t dZ

r
t − ct dt, (11)
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where σH,t = DH,tσr is the instantaneous volatility. Finally, the dynamics of augmented

wealth after inflation W r
t are given by

dW r
t = W r

t

{
F r

t

W r
t

(
(rt + π′tσλ− π′tσσQ(ρSQ -ρrQ)′) dt + π′tσ dZ

)
+

Hr
t

W r
t

(
(rt + σH,tλr − σQσH,tρrQ) dt− σH,t dZ

r
t

)
(12)

+
(
(−ie,t + σ2

Q) dt− σQ dZQ
t

)}
.

Apparently, investors can only control the dynamics of real augmented wealth W r
t by

aligning the asset allocation πt of the financial wealth fraction
F r

t

W r
t
, while the dynamics

of the present value of future contributions Ht evolve completely exogenously. Since Hr
t

evolves like a coupon bond, the overall stock fraction of W r
t is πt

F r
t

W r
t

< πt. In turn, if

investors desire an x percent overall stock fraction they have to hold, πt = x
W r

t

F r
t

percent

inside financial wealth. Over time the fraction
F r

t

W r
t

converges to 1 so that the financial

wealth stock fraction πt decreases to x.

3.2 Optimal Benchmark Strategy

We assume that the individual preferences are described by a utility function of the

constant relative risk aversion class which can be expressed as:

u(W r
t ) =

(W r
t )1−γ

1− γ
, γ > 0, γ 6= 1, (13)

where γ is the individuals coefficient of relative risk aversion (RRA) and T the length

of the investment horizon which is defined as the retirement age 65 minus the age at

which the investor starts to contribute to the pension plan. We will consider invest-

ment horizons of 10, 20, 30, and 40 years, which corresponds to investors starting the

accumulation plan at age 55, 45, 35, and 25, respectively. Note, that at time T the

value of future contributions is 0, so that W r
T = F r

T .
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Since we prevent the portfolio strategy from varying according to the evolution of

state variables, we cannot rely on the standard dynamic asset allocation approach in the

spirit of Merton (1969,1971). Rather than maximizing the drift of the value function

conditional on the current state of nature, we construct the static life-cycle strategy by

deriving the optimal weights πt which maximize the utility drift at each future point in

time given the information at t = 0:

πt = arg max E0

[
du(W r

t )
]
, (14)

subject to the intertemporal budget restriction (13). The rationale is that maximizing

the expected utility drift should deliver high terminal utility, as can be seen in the

numerical results of the following section. The advantage of our approach is that the

solution of the optimal asset allocation policy can be derived iteratively for increasing t.

Otherwise it would be necessary to numerically compute the optimal asset allocation for

all dates simultaneously. Due to the extremely high number of choice variables (number

of dates × (number of assets - 1)) the latter approach can easily become numerically in-

stable. To derive the optimal portfolio strategy we need terms of E0[du(W r
t )] depending

on πt formed via an application of Ito’s Lemma:

π′tσ


λ− σQ

(
1− 1

2
γ

)  ρSQ

ρ−rQ


 E1,t +

1

2
γσr

ρSr

−1

 E2,t

− 1

2
γπ′tσσ′πtE3,t (15)

with

E1,t = E0

[
F r

t

(W r
t )γ

]
, E2,t = E0

[
DH,t

F r
t Hr

t

(W r
t )γ+1

]
, E3,t = E0

[
(F r

t )2

(W r
t )γ+1

]
.
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Computing the first order conditions and solving for the optimal portfolio weights yields

π∗t =
1

γE3,t

(σ′)−1


λ− σQ

(
1− 1

2
γ

)  ρSQ

ρ−rQ


 E1,t +

1

2
γσr

ρSr

−1

 E2,t

 . (16)

For the calculation of the expectations E1,t, E2,t, and E3,t we perform Monte-Carlo

simulations given the optimal weights for all points in time s with s < t. In case

the semi-analytical solution (16) exhibits short positions, we optimize (14) numerically

given the short-selling restrictions πS, πB, πC ≥ 0. We restrict the investor from short-

selling, since households are usually not allowed to borrow excessively against future

labor income in order to purchase stocks. Figure (3) illustrates the optimal asset alloca-

tion schemes for risk aversions γ = 3 (low risk aversion), γ = 5 (moderate risk aversion),

and γ = 10 (high risk aversion) which should present a broad range of risk aversion.

For example, Mehra and Prescott (1985) suggest that γ = 10 is the highest reasonable

risk aversion for investors. We plot the asset allocation schemes for investment horizons

of 10, 20, 30, and 40 years which corresponds to investors starting the accumulation

plan at age 55, 45, 35, and 25 years.

The optimal static life-cycle strategy clearly supports popular advice to reduce the

equity fraction as one gets older, hence it conforms to recent life-cycle asset allocation

studies (e.g. Cocco, Gomes, and Maenhout, 2005) and to life-cycle rules suggested by

financial advisors or finance books (Malkiel, 1996). All scenarios exhibit a high initial

stock fraction of 100 percent and a reduction of (relative) stock holdings over time.

For the case γ = 3, the optimal equity fraction drops to 85 percent just before the

pension plan expires. Contrary, if the low risk strategy (γ = 10) implies that the equity

exposure drops much earlier to about 25 percent.7 Figure (3) also reveals that not

only the current age determines the optimal stock fraction, but also the age at which

the investor started the pension plan. For instance, the optimal stock fraction of a 45

7For γ = 1 and γ = 2 the optimal fractions are 100 percent for the entire investment horizon.
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Figure 3: Optimal Equity Fraction for Various Risk Aversions and Durations. Each
panel plots the optimal equity fraction for defined contribution plans with 10, 20, 30,
and 40 years of duration. Each panel reports the results for a specific risk aversion
(γ = 3, 5, 10). The calculation of the portfolio weights is done based on equation (16).
The expectations in equation (15) are calculated iteratively via 20,000 Monte Carlo
runs in which we set the time step to 1 month.
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year old investor with γ = 5 is 100 percent if he just started the 20 year pension plan

(dark solid line) but it would be around 50 percent if he started the plan with age 25

(dotted line). In all cases, except γ = 10 the remaining wealth is just invested in bonds

(πB
t = 1− πS

t ). In case γ = 10 the cash quote πC
t increases over time to 4 percent.

The reason for the declining equity fraction is that the investors wealth is composed

of the financial wealth F r
t and the discounted present value of future contributions Hr

t

. The investor views future contributions to the portfolio as a bond investment with

declining value over time. Accordingly, it is optimal to start with high stock positions

at early ages to compensate for the illiquid overinvestment in bond-like future contri-

butions and to phase down the equity fractions later, so as to maintain the optimal

stock fraction of total wealth (which includes the present value of bond-like future con-

tributions).8 Another intuitive explanation is that the investor can easily compensate

potential stock market downturns in the early phase of the accumulation plan because

the sum of invested contributions is rather small compared to sum of contributions still

to be made.

4 Monte Carlo Analysis

4.1 Impact of Risk Aversion, Maturity, and Inflation on Op-

timal Retirement Wealth and Replacement Ratios

In order to make projections of possible outcomes of real terminal wealth when following

the optimal life-cycle asset allocation rules derived above, we run 20.000 independent

simulations. The time-step in these simulations is set to one month so that contributions

and changes in the portfolio composition are made monthly.

Table II reports the dispersion of optimal terminal wealth measured as a multiple

8Stock investments would even be highly leveraged if we did not include the short-selling restrictions.
So, the restriction to maximum stock fraction of 100 percent is strongly binding.
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of the sum of contributions made before and after inflation. These are the relevant

figures for an potential investor to determine, first, when he should start contributing

to a pension plan in order to achieve a certain level of retirement wealth and, second,

to find out which grade of outcome dispersion he tolerates in order to determine his

degree of risk aversion and to choose the appropriate static life-cycle strategy.

The longer the investment horizon the higher each percentile of terminal wealth due

to the compound interest effect. However, the increase is steeper for high percentiles

than for low percentiles so that the outcome dispersion also increases. This effect is

particularly driven by the rising skewness of compounded stock returns. Furthermore,

the relative difference between percentiles before and after inflation grows with the

length of the investment horizon so that it becomes in turn more important to account

for inflation for long investment horizons.

In addition to the investment horizon, the level of risk aversion has considerable

impact on the dispersion of terminal wealth since it determines the magnitude of the

optimal stock market exposure. For instance, for γ = 10 the range of growth rates

lies between 5.75 (95th percentile) and 1.76 (5th percentile) after inflation for T = 40,

but for γ = 1, the 95th percentile (16.88) is 10 times higher than the 5th percentile

(1.70). The significant impact of the asset allocation on the characteristics of terminal

wealth suggests how important it is to estimate the risk aversion of the private investor

accurately in order to provide him with the adequate pension plan asset allocation.

It is also illustrative to know how high the additional private pension is given that

the terminal wealth is converted into a life-long annuity. To this end, we assume in the

following analysis that the terminal wealth is used to purchase a nominal life-annuity

with escalating payouts.9 The premium a(65, T ) for an annuity with an initial payout

9The empirical relevance of inflation indexed annuities varies when considering different countries.
The U.S. private annuity market practically offers only nominal annuities whereas the real annuity
market in U.K. is well developed (see Brown, Mitchell, Poterba, 2001).
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Table II
Percentiles of Optimal Terminal Wealth Growth Rates

Before Inflation After Inflation
Risk Aversion 5th 50th 95th 5th 50th 95th

T = 10 γ = 1 0.99 1.53 2.43 0.88 1.35 2.17
γ = 2 0.99 1.53 2.43 0.88 1.35 2.17
γ = 3 1.00 1.52 2.38 0.89 1.35 2.11
γ = 4 1.04 1.49 2.21 0.92 1.32 1.96
γ = 5 1.07 1.46 2.06 0.95 1.30 1.83
γ = 6 1.09 1.44 1.95 0.96 1.28 1.74
γ = 7 1.10 1.42 1.87 0.97 1.26 1.67
γ = 8 1.11 1.40 1.81 0.98 1.25 1.61
γ = 9 1.12 1.39 1.76 0.99 1.24 1.57

γ = 10 1.13 1.38 1.72 0.99 1.23 1.54

T = 20 γ = 1 1.31 2.55 5.33 1.04 2.02 4.18
γ = 2 1.31 2.55 5.33 1.04 2.02 4.18
γ = 3 1.33 2.52 5.14 1.06 1.99 4.02
γ = 4 1.39 2.41 4.53 1.10 1.91 3.56
γ = 5 1.43 2.31 4.04 1.12 1.83 3.17
γ = 6 1.45 2.24 3.69 1.14 1.77 2.91
γ = 7 1.46 2.17 3.43 1.15 1.72 2.70
γ = 8 1.47 2.12 3.24 1.16 1.68 2.55
γ = 9 1.48 2.08 3.10 1.16 1.65 2.44

γ = 10 1.48 2.05 2.98 1.17 1.62 2.35

T = 30 γ = 1 1.82 4.41 11.92 1.30 3.14 8.33
γ = 2 1.82 4.41 11.92 1.30 3.14 8.33
γ = 3 1.86 4.32 11.21 1.33 3.07 7.85
γ = 4 1.93 4.01 9.40 1.37 2.85 6.58
γ = 5 1.97 3.75 7.99 1.40 2.66 5.62
γ = 6 1.98 3.56 7.04 1.41 2.52 4.92
γ = 7 1.99 3.40 6.37 1.42 2.42 4.46
γ = 8 2.00 3.28 5.88 1.42 2.33 4.13
γ = 9 2.00 3.18 5.50 1.42 2.26 3.87

γ = 10 2.00 3.10 5.21 1.42 2.21 3.67

T = 40 γ = 1 2.60 7.63 26.67 1.70 4.93 16.88
γ = 2 2.60 7.63 26.67 1.70 4.93 16.88
γ = 3 2.65 7.39 24.50 1.73 4.77 15.52
γ = 4 2.73 6.68 19.45 1.78 4.31 12.27
γ = 5 2.76 6.10 15.80 1.80 3.93 9.98
γ = 6 2.76 5.65 13.36 1.80 3.65 8.48
γ = 7 2.75 5.31 11.73 1.79 3.44 7.45
γ = 8 2.74 5.06 10.59 1.79 3.27 6.72
γ = 9 2.73 4.85 9.73 1.78 3.13 6.17

γ = 10 2.71 4.68 9.08 1.76 3.03 5.75

Note.This table presents the 5th, 50th, and 95th percentile of wealth growth-rates
before and after inflation for varying risk aversion γ and investment horizons T . The
computation is done using the parameters given in Table 1 and simulation of 20,000
trajectories for the different optimal defined contribution plans. The optimal portfolio
weights are calculated according to equation (16).
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of 1 for a 65 year old individual at time T is calculated actuarially fair according to

a(65, T ) =
∞∑

s=0

p(65, s)(1 + δ)sP (T, s), (17)

where p(65, s) is the probability that the retiree survives to age 65 + s given that he

is alive at age 65 and (1 + δ) is the annual growthrate of annuity payments. Survival

probabilities are taken from the DAV 2004 Aggregate 1 mortality tables for females

with trend adjustment to account for mortality improvements. We set δ = 0.02 which

is approximately commensurate to expected inflation. This parameterization ensures

that the real income from annuities during retirement is flat in expectation. The con-

version of nominal terminal wealth W n
T leads to an initial nominal annuity income of

W n
T /a(65, T ). We divide this income by the last pre-retirement labor income in order

to calculate the so-called replacement ratio which is a commonly used measure to assess

which labor income drop the retiree can compensate.

The range of simulated replacement ratios for various risk aversions and investment

horizons appears in Table III. Together with the level of replacement ratios, the variabil-

ity of outcomes rises drastically over time. While the low risk strategy γ = 10 produces

outcomes which lie between 2.3 (5th percentile) and 4.17 percent (95th percentile) for

T = 10, corresponding values for T = 40 are 16.8 (5th percentile) and 65.9 percent

(95th percentile). The increase is amplified even further for the high risk strategy, so

that the replacement ratio at the 95th percentile is more than ten times higher than

the one at the 5th percentile (190.2 versus 16.1 percent). Since most private investors

do not now which γ they have, Table III is useful to assess how long and how risky

one should invest in order to attain a certain additional income during retirement with

a certain probability. The probable minimum replacement ratio (5th percentile) is an

important indicator if the investor needs a certain additional income with high confi-

dence. For instance, if the investor needs an additional pension income of 16 percent he

has to start accumulating at age 25 (i.e. T = 40). This will ensure that he reaches his
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Table III
Percentiles of Optimal Replacement Ratios

T = 10 T = 20
5th 50th 95th 5th 50th 95th

γ = 1 2.07 3.38 5.73 γ = 1 5.07 10.46 23.62
γ = 2 2.07 3.38 5.73 γ = 2 5.07 10.46 23.62
γ = 3 2.10 3.36 5.62 γ = 3 5.15 10.34 22.73
γ = 4 2.17 3.29 5.23 γ = 4 5.34 9.91 20.05
γ = 5 2.23 3.24 4.91 γ = 5 5.48 9.52 17.93
γ = 6 2.26 3.19 4.68 γ = 6 5.56 9.19 16.43
γ = 7 2.29 3.14 4.49 γ = 7 5.61 8.92 15.34
γ = 8 2.31 3.11 4.36 γ = 8 5.64 8.71 14.53
γ = 9 2.32 3.08 4.25 γ = 9 5.65 8.55 13.90
γ = 10 2.33 3.06 4.17 γ = 10 5.66 8.41 13.41

T = 30 T = 40
5th 50th 95th 5th 50th 95th

γ = 1 9.58 24.72 71.78 γ = 1 16.21 50.77 190.20
γ = 2 9.58 24.72 71.78 γ = 2 16.21 50.77 190.20
γ = 3 9.77 24.20 67.81 γ = 3 16.52 49.19 176.17
γ = 4 10.11 22.47 56.56 γ = 4 17.08 44.38 140.12
γ = 5 10.31 21.02 48.29 γ = 5 17.25 40.50 114.28
γ = 6 10.40 19.88 42.56 γ = 6 17.25 37.59 96.54
γ = 7 10.41 19.04 38.53 γ = 7 17.19 35.48 84.94
γ = 8 10.42 18.37 35.68 γ = 8 17.09 33.75 76.75
γ = 9 10.40 17.83 33.45 γ = 9 16.97 32.32 70.60
γ = 10 10.37 17.38 31.73 γ = 10 16.82 31.18 65.93

Note.This table presents the 5th, 50th, and 95th percentile of replacement ratios for
various risk aversions γ and investment horizons T . The replacement ratio is defined as
the first annuity income divided by the last pre-retirement labor income whereby it is
assumed that the terminal wealth is converted into a life-long escalating annuity. The
computation is done using the parameters given in Table 1 and simulation of 20,000
trajectories for the different optimal defined contribution plans. The optimal portfolio
weights are calculated according to equation (16).

goal with approximately 95 percent probability. On the other hand, an investor which

already has a high and secure pension income from other sources (e.g. public pension or

defined benefit plans) might not need to save as long and prefer a more risky strategy.

4.2 Utility Costs of Suboptimal Strategies

This section is devoted to the evaluation of the most common asset allocation schemes

for defined contribution plans against the optimal strategy derived above. To this end,
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we consider the following asset five allocation schemes:

1. Pure stock/bond/money plans. Although those strategies do not gain from

diversification among asset classes we introduce them in order to gain insight into the

long term risk and return profile implied by the assumed model and parameterization

of the three asset classes stocks, bonds, and money. Especially pure money plans are

the most often default option offered in defined contribution plans if participants do

not actively change the investment option (Holden and Venderhei, 2005).

2. Constant mix strategies. In the class of constant mix strategies we consider the

60/40 stock bond mix. The upside of constant mix strategies is that they are easy

to realize for the provider from an administration perspective if there already exists a

mutual fund for each asset class.

3. Life-cycle strategies. We implement the strategy commonly known as the

”100−minus−age” strategy which invests 100− age percent in stocks and the remainder

in bonds.

4. Static portfolio insurance. The common notion of portfolio insurance strategies

is restrict the downside risk at the end of the pension plan. The usual guarantee is that

at the end of the pension plan at least the sum of invested contributions is attained.

We construct the strategy such that always as many zero coupon bonds as needed

to maintain a nominal return guarantee are held in the portfolio. The part which is

invested into zero bonds is exactly the present value of the money-back guarantee of the

nominal contribution. Here the zero bonds have the same duration as the remaining

pension plan maturity. This strategy is basically a cash-flow matching strategy and has

the advantage that the minimum return guarantee is met with 100 percent probability.

5. Dynamic portfolio insurance. These portfolio insurance strategies dynamically

control the stock fraction over time, usually such that at the end of the pension plan

the value of the portfolio exceeds the sum of contributions (in nominal terms). We

employ the famous constant proportion portfolio insurance strategy (CPPI) in which
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the stock fraction is set according to:

πS
t = min

(
m

F n
t −Bt

F n
t

, 1

)
, (18)

where m is the so-called multiplier and Bt is the present value of the sum of contributions

made until t. We set the multiplier to 4. Since we assume that the portfolio is balanced

monthly, setting the multiplier to 4 implies that the assumed maximal loss of stock

markets in one month is 1/4 = 25 percent. The bond fraction is set to 1 − πS
t . The

motivation of this strategy is that in contrast to static portfolio insurance a certain

probability to miss the nominal return guarantee is tolerated in order to increase the

expected return. This, because static portfolio insurance strategies have to start from

the beginning with a certain bond fraction in order to keep the money-back guarantee,

the CPPI strategy starts out with a pure stock portfolio and switches to bonds only if

the money-back guarantee is jeopardized. Hence, the risk and return profiles of both

portfolio insurance strategies are fundamentally different, except for the fact that both

have the goal to keep the money-back guarantee at the end of the investment horizon.

We assess the risk and return efficiency of the described strategies in terms of

utility losses relative to the optimum. To this end, we calculate the certainty equivalent

wealth for each considered strategy and compare it to that of the optimal strategy. The

certainty equivalent wealth (CEW) denotes the riskless terminal wealth in real terms

which the individual needs to be indifferent between following a certain asset allocation

strategy and earning the CEW. Formally, the CEW is defined by the condition

u(CEW ) = E[u(W r
T )] (19)

Having calculated the CEW levels for the optimal strategies and the practicable in-

vestment plans we compute the relative difference between the CEW of the practicable

strategies and that of the optimal strategy. Since the evaluation of the strategy heavily
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Figure 4: Relative Loss in Certainty Equivalent Wealth of Practicable Strategies Com-
pared to the Optimum. This figure shows for various degrees of risk aversions the utility
loss of following a suboptimal strategy compared to the optimal strategy. The calcu-
lation is done via Monte Carlo simulations (20,000 paths) for a defined contribution
plans with the duration of T = 20 (upper graph) and T = 40 years (lower graph).

depends on the risk aversion parameter we calculate the relative loss in CEW for a

range of risk aversions between γ = 1 and γ = 10.

The results of this analysis are reported in Figure (4) for the investment horizons

T = 20 and T = 40. Conveniently, we identify three segments of risk aversion (low,

moderate, and high). The upper graph displays the results for T = 20. At very low
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degrees of risk aversion around γ = 1 and γ = 2 investors would prefer stock based

investments like the pure stock plan and the dynamic portfolio insurance so that utility

losses of that strategies are quite small. Utility losses of diversified strategies which mix

asset classes like the constant mix, life-cycle, static portfolio insurance strategy would

be around 20 percent. Holding a pure bond or money plan would lead to significant

utility losses of around 40 percent. For moderate risk aversions in the range γ = 3 to

γ = 8 the 100-minus-age rule and the constand mix strategy are closest to the opti-

mum with utility losses below 10 percent. The stock based strategies lead already to

high utility discounts up to 20 percent while the bond based strategy leads to losses

of about 15 to 30 percent. The pure money market investment leads to high losses of

more than 30 percent. For high risk aversions γ = 9 to γ = 10 the static portfolio

insurance together with the 100-minus-age rule and the constand mix strategy become

the preferred strategies with utility losses below 5 percent. In this high risk aversion

segment stock based strategies lead to utility losses of around 25 percent, and similar

results are obtained for pure money market plans. It is also noteworthy that the dy-

namic portfolio insurance and static portfolio insurance strategy exhibit fundamentally

different risk profiles although both have the main goal to warrant the nominal money-

back guarantee. By and large, the pattern of results stays the same for T = 40 (lower

graph), except for that utility losses increase by about 20 percent for all strategies.

The analysis reveals that utility losses can be extremely high if investors choose a

strategy which does not reflect their risk aversion. Utility losses can be especially high if

the portfolio is underdiversified and only one asset class is held. Conversely, strategies

which mix asset classes benefit from having a more moderate risk-return profile. In

turn, if investors do not know their risk aversion exactly, diversified strategies should

be preferred. They are most attractive to moderately risk averse investors and lead to

small utility losses at the ends of the risk aversion spectrum. This result makes clear

how crucial the estimation of the investor attitude towards risk is, particularly if the
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investment horizon is so long. Investment risks have to be clarified to the investor so

that he can choose the most suitable portfolio strategy. Furthermore, the risk aversion

parameter should reflect background risks of the individual, which can hardly been

modeled explicitly. For instance, it might be necessary to adjust the risk aversion

parameter in order to take into account other components of household wealth such as

human capital, housing, and insurance wealth.

5 Conclusions

In the light of the disillusioning evidence on household financial literacy, the present

paper has derived relatively simple optimal asset allocation rules which could serve

as default options for defined contribution plans. To be practicable for pension plan

providers we impose short selling restrictions and require the optimal asset allocation

strategy to evolve deterministically over time rather than stochastically. From the

view of plan participants this deterministic life-cycle strategy is transparent and easily

comprehensible since they ex-ante know which asset allocation will be held at future

dates. Further, performance losses due to administration as well as transactions costs

can be avoided. Thereby, our assumed asset model accounts for the major long-term

investment risks: stock market price risk, expected and unexpected inflation risk as

well as interest rate risk.

Regarding the optimal asset allocation our results conform to recent studies in-

cluding non-financial income inasmuch the equity fraction declines until the retirement

phase is reached. The reason is that the present value of future contributions is per-

ceived as a bond investment so that it is optimal to engage higher stock fractions in

the beginning of the pension plan and to decrease the fraction commensurately to the

decline in the present value of future contributions. The higher the risk aversion the

faster declines the stock fraction.
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Our Monte Carlo analysis shows that the choice of the asset accumulation strategy

and the length of the investment horizon have significant impact on the outcome of the

accumulation plan and hence standard of living during retirement. Investors should

definitely be aware of how long they should accumulate retirement wealth and how

risky they should invest in order to achieve the appropriate dispersion of retirement

wealth or annuity income if wealth is converted into a life-annuity.

Our final welfare analysis suggests that typical asset allocation schemes found in

practice are close to the optimum in terms of certainty equivalent wealth comparisons if

the scheme is chosen commensurately to the risk appetite of the plan participant so that

utility losses are around 5 percent if the risk aversion of the participant is estimated

correctly. However, if an asset allocation strategy is chosen that does no reflect the risk

aversion of the investor, utility losses can reach up to 60 percent. Utility losses become

particularly severe for longer investment horizons.
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