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Abstract

The paper develops a framework for the design of optimal struc-
tured products allowing us to analyze the maximal utility gain for an
investor that can be achieved by introducing structured products. We
demonstrate on data from two of the largest markets for structured
products (Germany and Switzerland) that most of the successful struc-
tured products are not optimal for a perfectly rational investor and we
investigate the reasons that make them nevertheless look so attractive
for many investors. Finally, using a large-scale field experiment, in
which subjects freely designed structured products, we deduce how
various factors effect the preferences on structured products.
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1 Importance of structured financial prod-

ucts

Structured products, SPs, combine one or more classical assets (stocks, bonds,
indices) with at least one derivative into a bundle that shall have specific
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2 1 IMPORTANCE OF STRUCTURED FINANCIAL PRODUCTS

interesting features for investors, like capital protection or increased partici-
pation. They enable investors with comparatively low budget and knowledge
to invest indirectly into derivatives. Banks profit from the restricted partici-
pation of these non-institutional investors in the derivatives market, in that
they retain a margin profit when issuing structured products. Structured
products are immensely popular in Europe. However, some European states
like Norway recently introduced high regulatory burdens on them. Our pa-
per contributes to these regulatory issues by analyzing the risks and benefits
of structured products for private investors. Structured products are not yet
as popular in the USA. Potential reasons for this are regulatory reasons, but
also the fact that more private investors than in Europe hold stocks1.

Note that the existence of structured products is puzzling since in traditional
portfolio models there is no role for SPs. The classical mean-variance model
of Markowitz [21], for example, suggests that an investment in the mar-
ket portfolio and the risk-free asset would be sufficient to construct optimal
investments for all degrees of risk-aversion – this is the famous Two-Fund-
Separation, 2FS. Hence the only role for banks would be to offer the market
portfolio at minimal cost, e.g. in the form of an exchange traded fund (ETF).

Not only the widespread existence of structured products is puzzling, but also
the large variety of payoff patterns that can be found. Even very complicated
payoff patterns are often not as exotic and rare as one would expect: this
can be seen in data from the German and the Swiss market (the two largest
markets for structured products in Europe). The Swiss sample consists of
N = 47′362 products issued from March 2007 to November 2007. The Ger-
man sample consists of all structured products on the market (N = 270′254)
as of end of November 2007. Figure 1 and Figure 2 show typical payoff dia-
grams for the most popular types in each country.2 We observe that in each
country a large variety of products are popular: leverage, capital protection
and outperformance can all be found. At the same time there are clear sim-
ilarities between Germany and Switzerland: three product types (discount
certificates, bonus certificates and leverage products) can be found in the top
list of both countries.

Structured products have so far been studied in academic research nearly ex-
clusively from the issuer’s perspective, mostly in the context of option pricing
and hedging. (For an early exception see the article by Shefrin and Stat-
man [27].) Indeed, building on the seminal paper of Black and Scholes [3]
a new field of finance, called financial engineering, has emerged in which

1Compare [2] for more on the regulatory background for structured products in the US.
2For clarification, we omit plain vanilla type put and call options that are occasionally

also listed as structured products.
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(a) Discount
Certificates (24.6%)

(b)
Bonus-/partially

protected products
(19.3%)

(c) K.O. products
with stop loss

(8.9%)

(d) K.O. products
without stop loss

(3.1%)

(e) Reverse
convertibles (2.3%)

(f) Exotic leverage
(2.0%)

Figure 1: The most popular structured products in Germany with their
respective shares of all issued products (N = 270 254).

mathematicians and engineers developed more and more elaborate pricing
techniques for ever more complicated structured products. Besides this huge
technical literature, recently a few empirical studies on the actual market
prices [32, 15, 31] of SPs can be found and there are interesting first ex-
plorative studies on specific puzzles regarding the investors’ preferences for
certain product classes [28, 16, 6, 7]. But all in all the investor’s perspective
on structured products is still uncharted territory, somehow “the dark side
of the moon”.

In this article we try to shed some light on this “dark side” and take the in-
vestor’s perspective as the starting point for our expedition. In this way we
ask whether structured products are an appropriate tool to improve invest-
ment performance and what types of products are optimal under normative,
but also under behavioral models. In particular, we measure how big the po-
tential improvement of a portfolio can be when adding structured products.
We also demonstrate that the most popular products derive their popularity
not from rational, but from behavioral factors like framing, loss aversion and
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(a) Barrier reverse
convertibles

(30.5%)

(b) Tracker
certificates (18.0%)

(c) Bonus
certificates (9.9%)

(d) Mini futures
(9.2%)

(e) Discount
certificates (7.9%)

(f) Uncapped
capital protection

(6.3%)

Figure 2: The same list for Switzerland (N = 47 362).

probability mis-estimation.

The paper is organized as follows:

In the next section we provide a canonical model that we then use to design
optimal structured products. Thereafter we reverse the point of view and
ask for any given structured product which risk-preferences and biases could
justify its existence. Finally we report results from a large field experiment
in which participants could design structured products using a multi-touch
table.

2 Designing optimal SPs

In the following we introduce a simple two-period model3 for a structured
product, assuming that the market prices can be described by the CAPM or
the Black-Scholes model.4 Using results on the co-monotonicity of optimal

3The majority of investors keeps their structured products until maturity.
4Many of our results could be obtained under much weaker assumptions, e.g. mono-

tonicity of the likelihood ratio. We point out when this generalization is possible.
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investments [23] and extending previous results on optimal investments in the
strictly concave expected utility setting [20], we obtain qualitative properties
that optimal structured products should satisfy under more and more relaxed
conditions on the rationality of the investors. We will use these results to
show later that the attractiveness of the currently most popular classes of
SPs cannot be understood within a rational decision model.
Some of our analytical results are similar to independent work by Prigent [22]
on portfolio optimization and rank-dependent expected utility. In particular,
Prigent derives a solution for a basic optimization problem in the case of non-
concave utility functions (see Lemma 1).

2.1 A canonical model

We say that a structured product is optimal if its payoff distribution maxi-
mizes the given utility of an investor under the constraint that the arbitrage-
free price of the product cannot exceed a certain value. It seems appropriate
to use a two-period model, since most structured products are sold over the
counter and have a fixed maturity. To obtain intuitive results, we will assume
most of the time that the market can be described by the capital asset pricing
model. Note that the validity of the CAPM is not at odds with violations of
the two-fund separation property. For example heterogeneous beliefs or un-
correlated optimization mistakes give rise to heterogeneous portfolios while
on the level of the market the security market line property of the CAPM
can still hold [8, 13, 4]. Moreover, we assume that the market is complete for
the product designer and that the investor does not hold other assets than
the structured product (or at least considers them as a separate “mental
account”).5

It has been shown in [23] that any optimal structured product can be de-
scribed by its return distribution at maturity as a function of the return of
the market portfolio. Therefore we naturally arrive at the following utility
maximization problem:

max
y∈RS

S∑
s=1

psu(ys),

subject to
∑
s

πsys = B,

where u : R → R is the utility function, B > 0 is the budget, s = 1, . . . , S
mark the states that occur with probability ps > 0 and π = (π1, . . . , πS)� 0

5Most of our results carry over if the investor holds additionally risk-free assets.
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are the state prices. ys denotes the payoff of the structured product at
maturity in state s.
It will turn out to be useful to transform this model slightly: normalize πs
to π∗s with

∑
s π
∗
s = 1, set B = 1, then we can define the likelihood ratio

`s = π∗s/ps. Absence of arbitrage implies
∑

s π
∗
sR

k
s = R, where Rk

s is the
return of asset k in state s and R is the risk-free rate. Therefore

∑
s πs = R

and we can reformulate the optimization problem using the likelihood ratio
process

max
y∈RS

S∑
s=1

psu(ys),

subject to
∑
s

ps`sys = R. (1)

While studying a discrete state space helps to find an intuition for this prob-
lem, it will turn out to be easier if we study a continuous state space. Particu-
larly, we will not face the problem that we have to split states when studying
non-concave utility functions. Therefore we continue with the continuous
variant of (1) and maximize

U(y) :=

∫
R
u(y(x)) dp(x),

over all y ∈ L1(R, `p), subject to the condition∫
R
y(x)`(x)dp(x) = R.

The likelihood ratio ` can be written in the CAPM as

`(x) = a− bx,

for some positive constants a,b, as has been shown in [5]. From the linearity
of the likelihood ratio ` the security-market line of the CAPM can be derived
by elementary computations.
In the case of the Black-Scholes model this can be written as `(x) = Ae−Bx

for suitable A,B > 0.

2.2 Optimal SPs in the strictly concave case: convex
payoffs

Let us assume that the investor has rational preferences, i.e. he follows the
expected utility approach by von Neumann and Morgenstern [30]. The case
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where the utility function u is strictly increasing and strictly concave has
been studied previously by Kramkov and Schachermeyer [20]. In this case, a
straightforward variational approach leads to the optimality condition

y(x) = v−1(λ`(x)), (2)

where v := u′ and λ is a Lagrange parameter that has to be chosen such
that (2) holds.
Note that unless the utility function is quadratic, in the two-period model
the 2FS property does not hold for any distribution of returns6.
What conditions on y can we derive from (2) in general? In fact, in the most
realistic case (when the investor is prudent7), y is convex, as the following
theorem shows:

Theorem 1. Let u be a strictly increasing and strictly concave utility func-
tion. Assume furthermore that u′′′ > 0 (i.e. the investor is prudent). Then
the return of an optimal SP on a CAPM market is strictly convex as a func-
tion of the market return. If u′′′ = 0 (i.e. u is quadratic) then the payoff
function will be linear. If u′′′ < 0 the payoff function will be strictly concave.

Proof. Take the second derivative of y(x) = v−1(λ(a + bx)) with v := u′.
This gives:

y′′(x) = −λ
2b2v′′(v−1(λ(a+ bx)))

(v′(v−1(λ(a+ bx))))3
.

The denominator is positive, since v′ = u′′ < 0 (u is strictly concave).
Thus y′′ is positive if u′′′ = v′′ > 0.
This result is surprising since prudent investors prefer SPs that look similar
to call options which are usually associated with gambling or risk-taking! In
particular, the theorem shows that if u is quadratic, the return is a linear
function of the market return, i.e. there is no need for a SP at all, which
is the classical two-fund separation theorem of the mean-variance portfolio
theory.
The following corollary gives a simpler condition that is well-known to finance
under which strict convexity of y holds:

Corollary 1. If the investor has non-increasing absolute risk-aversion, then
the payoff function should be strictly convex.

6In models with time continuous trading, no transaction costs and an underlying process
that follows a geometric Brownian motion the 2FS property would hold for any class of
utility functions with constant relative risk aversion.

7The importance of prudence is well known from the literature in insurance theory, see
for example [14]
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Proof. Consider the Arrow-Pratt risk measure r(x) := −u′′(x)/u′(x). Then

r′(x) = −u
′′′(x)u′(x)− (u′′(x))2

(u′(x))2
. (3)

Hence, if r′ ≥ 0 (i.e. r is not increasing) then u′′′(x) ≥ (u′′(x))2

u′(x)
. Since u is

strictly increasing, this is positive. Thus v′′ = u′′′ > 0 and we can apply
Theorem 1.
Corollary 1 essentially also holds when we replace the CAPM with the Black-
Scholes model:

Theorem 2. If the pricing is described by Black-Scholes, then the optimal
payoff function is strictly convex if the investor has decreasing absolute risk
aversion (e.g. constant relative risk aversion).

Proof. We compute the second derivative of y which becomes

y′′(x) =
λAB2e−Bx

(v′(v−1(λAe−Bx)))
− λ2A2B2e−2Bxv′′(v−1(λAe−Bx))

(v′(v−1(λAe−Bx)))3
.

This is positive if the following condition holds:

λAe−Bxv′′(v−1(λAe−Bx))− (v′(v−1(λAe−Bx)))2 > 0. (4)

Noticing that λAe−Bx = v(v−1(λAe−Bx) and using (3) we prove this inequal-
ity.
Let us now study two prominent examples of specific utility functions, where
the payoff function of the optimal structured product can be given explicitly.

Power utility

Let u(x) := 1
α
xα with α < 1, α 6= 0. Then v(x) := u′(x) = xα−1 and

v−1(z) = z
1

α−1 . Therefore, recalling (2), the optimal structured product is
given by

y(x) = (λ`(x))−
1

1−α .

We can compute λ explicitly, if we use the constraint (2):∫
(λ`(x))−

1
1−α `(x)p(x) dx = R,

which can be resolved to

λ =

(
R∫

`(x)
α
α−1p(x) dx

)α−1

.
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All together we obtain:

y(x) =
C

`(x)
1

1−α
, where C :=

R∫
`(x)

α
α−1p(x) dx

.

We see that y is a decreasing function of `. In the case of the CAPM we
obtain

y(x) =
C

(a− bx)
1

1−α
.

Thus the structured product is an increasing and convex function of the
underlying.

Exponential utility

Let u(x) := − 1
α
e−αx. Then v(x) := u′(x) = e−αx and v−1(z) = − 1

α
ln z.

Thus,

y(x) = − 1

α
ln(λ`(x)).

Again, we can compute λ explicitly, if we use 2, i.e.∫
y(x)`(x)p(x) dx = R.

The left hand side can be computed as follows:∫
y(x)`(x)p(x) dx = − 1

α

∫
ln(λ`(x))p(x)`(x) dx

= − 1

α

∫
(ln(λ) + ln(`(x)))p(x)`(x) dx

= − 1

α
ln(λ)− 1

α

∫
ln(`(x))p(x)`(x) dx.

Thus we obtain

λ = e−αR−
R
p(x)`(x) ln(`(x) dx.

The optimal structured product is therefore given by

y(x) = R− 1

α

(
ln `(x)−

∫
p(x)`(x) ln(`(x)) dx

)
.

And in the case of the CAPM we obtain

y(x) = R− 1

α
(ln(a− bx)− C) ,

where C :=
∫
p(x)(a−bx) ln(a−bx) dx. Again, y is an increasing and strictly

convex function of x.
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2.3 Optimal SPs in the general case

The assumption of strict concavity for the utility function is classical, but has
been disputed a lot in recent years. Implied utility functions can be computed
from stock market data and often show non-concave regions, compare for
example [17] and [9]. Moreover, the most popular descriptive theory for
decisions under risk, cumulative prospect theory, predicts non-concavity of
u in losses [29]. Other descriptive theories also assume risk-seeking behavior
at least for small losses.
Given the empirical and experimental evidence, it seems therefore more likely
that u depends on a reference point (e.g. current wealth level) and that it
has some strictly convex region for small losses. What would be an optimal
SP for an investor described by such a model?
We first show that in order to find an optimal SP, it is sufficient to consider
the concavification of the value function u, i.e. the smallest function larger
or equal u which is concave8:

Lemma 1. Assume that u is concave for large returns and assume that the
returns are bounded from below by zero9. Let uc be the concavification of u,
then there is an optimal SP for uc which is also optimal for u.

Proof. Let y0 be a point where uc(y0) > u(y0). We prove for any market
return x0 that an optimal SP for u does not have to yield the value y0, i.e.
y0 6∈ supp y. Suppose the opposite, i.e. y(x0) = y0 for some x0. We can find
two points y1, y2 with y1 < y0 < y2 such that λy1 + (1 − λ)y2 = y0 with
λ ∈ (0, 1), u(y1) = uc(y1), u(y2) = uc(y2) and uc(y0) = λu(y1) + (1−λ)u(y2).
Now we can construct another SP ỹ such that whenever the market return
is x0, ỹ gives a return of y1 with probability λ and a return of y2 with
probability 1 − λ. Let us do the same construction for all values y0 where
uc(y0) > u(y0). The new product obviously has a utility which is at least
as big as before, since λu(y1) + (1 − λ)u(y2) = uc(y0) > u(y0). Moreover, it
satisfies by construction the pricing constraint.
For the concavified utility we can now follow the same computations as be-
fore. The only difficulty is that the inverse of the derivative is still not
everywhere defined, since it can be constant. This, however, simply corre-
sponds to a jump in y, as can be seen, for instance, by an approximation
argument.
This implies particularly that we typically do not have convexity of the op-
timal structured product in the case of non-concave utility functions. There

8A similar result has been obtained by Prigent [22]
9This is always true in assumptions since there is limited liability for structured prod-

ucts, i.e. the most one can lose is the initial investment.
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is, however, one general property that holds in both cases which has been
proved (in a more general setting) in [23]:

Theorem 3. If the decision model is given by an arbitrary utility function
(possibly with reference point set by the initial wealth level and not necessarily
concave), any optimal structured product in a CAPM market or a market
with Black-Scholes pricing is a monotonic function (or correspondence) of
the market return.

In other words: the higher the return of the market portfolio at maturity,
the higher the return of the optimal structured product.
The intuition for this result is that whenever possible we would like to put
large returns on “cheap” states.10 Since the state price density is decreasing
in market returns, both in the case of CAPM and the case of Black-Scholes,
the cheapest states are the ones with the largest market returns. This forces
us naturally to assign large returns to states with large market return and
consequently small returns to states with small market return.

2.4 Numerical results: what drives what?

We know now how optimal structured products can be analytically computed
and what properties they satisfy. This framework should enable us to design
optimal structured products for investors with a broad range of risk prefer-
ences. However, the numerical computation is not as easy as the previous
examples suggested: in principle, we just need to evaluate equation (2), how-
ever, it is often difficult to compute the Lagrange parameter λ as explicitly
as we have done in the case of a power and of an exponential utility function.
Thus, we use for our numerical computation an iteration method, i.e. we
evaluate (2) for a fixed λ, then compute the error of the constraint (2) and
correct the λ. We iterate this until the error is sufficiently small.
Let us now give a couple of examples to see how optimal structured products
look like.

Power utility

Let us consider the power utility function u(x) = xα/α (i.e. a typical function
with constant relative risk aversion −x · u′′(x)/u′(x) = 1− α). The optimal
structured products for expected utility investors with this utility function
on a CAPM market (here and in the following examples always R = 0.05,
σ = 0.2 and µ = 1.09) is shown in Fig. 3. We see that the payoff function

10This intuition can be used to prove a special case of this theorem, which has been
found by Dybvig [10].
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Figure 3: Optimal structured product for CRRA-investors with α =
−4,−2.5,−1, 0.5.

of the product is strictly convex (which we know already from Theorem 1).
It features a “smooth” capital protection and an increasing participation in
gains.

Exponential utility

Let us consider the exponential utility function u(x) = −e−αx/α (i.e. a typ-
ical function with constant absolute risk aversion −u′′(x)/u′(x) = α). The
optimal structured product for an expected utility investor with this utility
function (for α = 0.5) on a CAPM market is shown in Fig. 4. We see that
the payoff function of the product is only very slightly convex.

Quadratic utility with aspiration level

Let us now consider a non-concave utility function. Non-concave utility func-
tions are a key ingredient of some behavioral decision models, like prospect
theory. They can also occur, however, for very rational reasons: an example
would be an investor who plans to buy a house in one year and has saved
just about enough money for the installment. (We denote his current wealth
level by x0.) His utility function, when considering a one-year investment,
will now be necessarily have a jump (maybe slightly smoothed by the uncer-
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Figure 4: Optimal structured product for an CARA-investor with α = 0.5.

tainty about the house prices) that will make it locally non-concave.11

Let us define the utility function as v(x) = a(x) + u(x) with a(x) = h(x)uh,
where uh is the extra utility gained by the house and h(x) is the probability
that he is able to afford the house which we set for simplicity as one for
x ≥ x0 and zero for x < x0, thus inducing a jump in the utility function at
x0. In reality the probability might be more like a logistic function rather
than a precise jump function, thus the overall utility v would look more like
a concave–convex–concave function. See Fig. 5 for illustrations.
To keep things simple we choose as u the function u(x) = x − αx2 with
α = 0.2. (Larger values of α lead to an saturation problem.) Moreover we
set x0 = 1 and uh = 0.02. We need to compute the concave hull of

v(x) = a(x) + u(x) =

{
x− αx2, for x < 1,
0.02 + x− αx2, for x ≥ 1

.

To this end, we compute the derivative of u to find the tangential line on u
which crosses the point (1, v(1)). A straightforward computation using (2)
leads to an explicit solution, depending on the Lagrange parameter λ which
is then computed numerically by an iteration scheme as outlined above.
The resulting optimal structured product is piecewise affine (as was to be

11This is similar to the aspiration level in the SP/A model, see [26, Chapter 25.5] for
an overview and further references.
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v(x)=u(x)+a(x)
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v(x)=u(x)+a(x)

convex concaveconcave

Figure 5: The utility function v of an investor with an aspiration level: his
utility increases above a certain threshold, thus making it non-concave with a
jump (left). If the precise location of the threshold is uncertain, the effective
utility function becomes again continuous, but is still convex around that
point (right).
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Figure 6: Optimal structured products for investors with quadratic utility
(α = 0.2) plus an aspiration for uh = 0.2 at position x0 = 0.9, 1, 1.05, 1.1.
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expected when using a quadratic u in CAPM12) and corresponds to a limited
capital protection as it can be found in many structured products (compare
Fig. 6).

The model, even though certainly simplistic, can in fact be confirmed by
empirical evidence: the classical investment goal for private investors is real
estate. Whereas in the US the percentage of realty owners in the population
is very high, this is not the case in most continental European countries,
moreover there houses are usually owned for longer periods of time, thus,
buying realty tends to be a very special event. If our previous considerations
are correct, then we would therefore expect that investors who plan to buy
realty in the next future would be more interested in buying capital protected
SPs. This has been tested in a survey by AZEK [12], where N = 106 test
subjects have been asked to choose between six structured products on the
MSCI World, out of which one provided a full capital protection. The test
subjects were mainly bankers and other professionals working in the financial
industry, thus their competence in understanding the survey question can be
assumed. The subjects were also asked whether they plan to buy in the
next years a house or an apartment and whether they already own realty. A
simple lottery question was used as proxy for their loss aversion.

According to our model there should be a significant positive relation between
the investment into a capital protected product and the plan to buy realty.
This correlation could, however, also be triggered by a general affinity to
conservative investments, which is just reflected by the plan to buy realty. To
test this, we performed a logit regression where we added two independent
variables: the loss aversion as estimated from the lottery question and a
dummy variable for the owners of realty. It turned out that all of these factors
were significant for their decision (see Table 2.4). The effect was stable when
removing the dummy variables for realty owners and the loss aversion and
was even more pronounced when only considering subjects which did not
own realty yet (N = 85).

Prospect theory

We can also use prospect theory as underlying preferences, i.e. a utility func-
tion which is convex in losses and concave in gains. As functional form
we use here the specification from [33] that can be seen as a second order

12If we use Black-Scholes, we get piecewise affine solutions when using piecewise expo-
nential utility functions, as can be shown be a similar computation.



16 2 DESIGNING OPTIMAL SPS

All subjects (N = 106):
Model 1 Model 2 Model 3

Coeff. Prob> χ2 Coeff. Prob> χ2 Coeff. Prob> χ2

Plan to buy 1.994 0.001*** 0.749 0.047** 1.101 0.059*
Owning realty 1.919 0.032** 1.138 0.066*
Loss aversion 0.819 0.035**

Only non-owners (N = 85):
Model 1 Model 2

Coeff. Prob> χ2 Coeff. Prob> χ2

Plan to buy 1.845 0.002*** 1.907 0.001***
Loss aversion 1.094 0.001***

Table 1: Factors influencing the decision to invest into a capital protected
structured product. ∗, ∗∗, ∗ ∗ ∗ =significant on the 10%, 5%, 1% level.

approximation of any prospect theory value function:13

u(x) :=

{
−λ(x− βx2), for x < 0,
x− αx2, for x ≥ 0.

(5)

We can think here of an investor who is (like most investors) afraid of losses,
but does not distinguish that much between small and large losses. This leads
to risk-seeking behavior in losses. Depending on the amount of loss-aversion
λ a smaller or larger amount of capital protection becomes optimal. Figure 7
shows the optimal solution in this case for various values of loss-aversion.

2.5 Utility gain by SPs: much ado about nothing?

We have seen so far that optimal structured products do indeed deliver a pay-
off structure that is different to classical portfolios including only the market
portfolio and a risk-free asset. The effort of computing such an optimal struc-
tured product and hedging it can in praxis not be neglected, therefore the
natural question arises whether it is worth it: how big is the potential utility
improvement?
To answer this question, we compute the expected utility of an optimal struc-
tured product and the expected utility of the optimal mix between the mar-
ket portfolio and the risk-free asset. We translate both values into certainty

13This form is also computationally simpler than the standard specification by Tversky
and Kahneman [29] and incorporates mean-variance preferences as a the special case when
α = β and λ = 1.
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Figure 7: Optimal structured products for investors with a prospect theory
utility as in (5) with α = β = 0.2 and λ = 1, 1.5, 2, 2.5.

equivalent interest rates, i.e. the (hypothetical) risk-free asset that would
have the same expected utility as the product respectively the portfolio. We
then consider the difference between both certainty rates and compare it with
the gain in certainty rates that can be achieved by a classical portfolio over
a risk-free investment. This analysis shows how good the “second order ap-
proximation” (the classical two-fund portfolio) is, comparing to the “higher
order approximation” (the optimal structured product). Thus we want to an-
swer a couple of questions of practical relevance: is the first (classical) step
of improvement big, and the second one (caused by the structured product)
negligible? Or are they equally important? Under what circumstances is the
additional potential improvement of structured products particularly large?

To keep the analysis simple, we restrict ourselves to the two examples of
the previous section: first, we consider a CRRA-utility function of the form
u(x) = xα/α. Later we will study the case of a quadratic utility function
with aspiration level.

The optimal structured product for CRRA-utility functions has been already
computed (see Section 2.2). Thus we can directly compute the expected
utility of y, where we assume a normal distribution with mean µ = 1.08
and standard deviation σ = 0.19 for the return of the market portfolio.
Reporting only this value would be idle: we need to compare it with other
utilities. Therefore we compute the improvement, as expressed in terms of
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certainty equivalent interest rate, over the optimal “classical” portfolio, i.e.
the optimal combination of the market portfolio and a risk-free investment.
To compute the optimal classical portfolio, we compute the utility of all
portfolios with a proportion of θ invested in the market portfolio and (1− θ)
invested into risk-free assets, where θ ∈ {0, 0.01, . . . , 0.99, 1}. Then we choose
the θ yielding the largest expected utility.
The results of this computation are summarized in Table 2.5.

Investment Certainty equivalent
Fixed interest (4%) 4.00%
Market portfolio (optimal classical) 4.58%
Optimal structured product 4.64%

Table 2: Improvement of a structured product for an investor with a classical
CRRA utility with α = −0.2 as compared to the improvement by classical
portfolios.

We see that the optimal structured product gives an improvement, but it is
not as big as the “first step”, i.e. the improvement induced by the classical
mean-variance portfolio theory. The improvement over the classical portfolio
is only 6 basis points.
This is not due to a specific choice of α. Very much to the contrary, Fig. 8
shows that the improvement is in fact small for all natural choices of α.

Investment Certainty equivalent
Fixed interest (4%) 4.00%
Optimal classical portfolio 4.24%
(53% market portfolio, 47% fixed interest)
Optimal structured product 4.24%

Table 3: Improvement of a structured product for an investor with a classical
CARA utility with α = 0.01 as compared to the improvement by classical
portfolios.

The second example, an exponential utility function, can be computed in
the same way. Here the improvement is minute (only 0.0004%) and in the
precision of the data in Table 2.5 not even visible. This does not come as a big
surprise, since the optimal structured product is close to a linear investment
(compare Fig. 4). The result is very similar if we vary the absolute risk
aversion.
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Figure 8: Utility for CRRA (as measured by the certainty equivalent interest
rate) of stock, risk-free asset (5% return), optimal two-fund portfolio and
optimal structured product. The utility gain by the structured product is
small.

So far it looks like the improvements of structured products are somewhere
between tiny and small, but noticeable. Structured products – much ado
about nothing? Are there no situations in which we can generate a decisive
improvement of a portfolio with their help?

Let us consider the third example, the quadratic utility with aspiration level.
Here, finally, the improvement due to structured products is considerable as
we see in Table 2.5. In fact, the improvement is as big (or bigger) than the
“first step improvement” done by the classical mean-variance theory! The
improvement is similar for various “aspiration levels” as Fig. 9 illustrates.

Investment Certainty equivalent
Fixed interest (4%) 4.00%
Market portfolio 3.74%
Optimal classical 4.06%
(8% market portfolio, 92% fixed interest)
Optimal structured product 4.30%

Table 4: Improvement of a structured product for an investor with an aspi-
ration level as compared to the improvement by classical portfolios.
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Figure 9: Utility with aspiration level (as measured by the certainty equiv-
alent interest rate) of stock, risk-free asset (5% return), optimal two-fund
portfolio and optimal structured product. We have varied the position of the
jump in the utility, i.e. the wealth the investor needs to reach his investment
goal. The utility gain by the structured product corresponds here up to 1%
interest rate.

Let us finally consider a prospect theory investor (without probability weight-
ing) with a utility function as in (5) with α = β = 0.2. We consider his utility
improvement for various levels of loss aversion λ, see Fig. 10.

To summarize our results it seems that whereas in classical strictly concave
settings, the additional amount of risk control due to structured products is
not large and, depending on the utility function, sometimes even quite small.
As soon as we broaden our horizon and look at situations with partially non-
concave utility functions, structured products become much more interesting.
In such situations, they can easily improve the portfolio by an amount that
is larger than the improvement of the first step from a fixed interest rate to a
classical optimal portfolio á la CAPM. However, the banks typically charge
at least 1% on SPs hence the utility improvements we found are not worth
these costs.
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Figure 10: Prospect utility (as measured by the certainty equivalent interest
rate) of stock, risk-free asset (5% return), optimal two-fund portfolio and op-
timal structured product. We have varied the loss aversion λ of the investor.
The utility gain by the structured product becomes substantial for low loss
aversion and is still in the order of 1.5% for interest rate for a normal loss
aversion of around 2.

3 After all, why do people buy structured

products?

So far our aim was to find optimal structured products for given utility
functions and characterize the shape of the payoff diagram and the size of
the utility gain. In this section we want to find for given structured products
(that we observe, e.g., on the market) a utility function and other aspects
for which these products are optimal.

As seen above an investor with expected utility theory that is strictly in-
creasing, strictly concave and prudent, i.e. a classical rational investor would
only invest into SPs with a strictly convex payoff function. This is in striking
contrast to the variety of structured products on the market as we have seen
them in Fig. 1 and Fig. 2.

In this section we want to investigate other potential reasons that can make
structured products attractive for investors, thereby relaxing our assumptions
on a classical rational investor step by step.
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3.1 Background risk

Let us relax our initial assumptions that an investor only invests into a
structured product (or considers the investment in SPs separately from other
investments) and allow the investor instead to hold additionally to the SP a
portfolio of classical assets – a combination of the market portfolio and risk-
free assets. In order to conclude that also in this setting optimal structured
products are convex, suppose the contrary, i.e. that the return of the SP is
described by a function y which is non-convex. Then the overall portfolio
can be described by the function

ỹ(x) = λ1R + λ2x+ (1− λ1 − λ2)y(x),

where λ1 > 0 is the proportion of total wealth invested in risk-free assets and
λ2 > 0 is the proportion of wealth invested in the market portfolio such that
1 − λ1 − λ2 > 0. According to Theorem 1 the function ỹ is strictly convex,
but ỹ′′(x) = y′′(x), thus we have a contradiction to the assumption that y is
non-convex.
We conclude that a non-convex SP for a classical rational investor would
only be useful if he already has assets with a strictly convex payoff function
in his portfolio. Mixing his assets in this way seems unrealistic, but ignoring
this, if we consider such assets as SPs and study the sum of all SPs, the
statements about optimal SPs are still true, but apply to the sum of the SPs
in the investor’s portfolio.

3.2 Investors with PT-type utility function

There is ample experimental and empirical evidence in favor of non-classical
decision theories like prospect theory. In the next step, we will therefore
implement one of the key ingredients of prospect theory, namely the convex-
concave structure of the utility function with respect to a reference point that
is in itself not fixed, but can, for instance, be the initial value of an asset.
We have seen already that in this case loss-aversion can induce a non-convex
payoff function of an optimal structured product with a “plateau” at zero
return. This mimics a frequent feature of structured products, namely limited
capital protection that is valid only up to a certain amount of losses.
More popular structures, however, like the highly popular barrier reverse
convertibles can still not be optimal, since we have the following corollary
from the co-monotonicity results in [23]:

Corollary 2. If the decision model is given by an arbitrary utility function
(possibly with reference point set by the initial wealth level), any optimal



3.3 Probability weighting 23

structured product in a CAPM market (or any market where the likelihood
ratio is decreasing as a function of the return of the market portfolio) is a
monotonically increasing function (or correspondence) of the market return.

In other words: the higher the return of the market portfolio at maturity,
the higher the return of the structured product.

This is obviously violated for all types of barrier products or, more generally,
all structured products whose return at maturity is not solely defined by the
return of the underlying market portfolio at maturity. Thus the modified
utility function of prospect theory can only explain the popularity of some
of the structured products offered today. The most popular types cannot be
understood within this model.

3.3 Probability weighting

Experimental studies have demonstrated that subjects systematically over-
weight small probabilities, i.e. small probability events (e.g. large losses when
deciding about buying insurance or large gains when deciding about buying
a lottery ticket) tend to have more impact on the decision than they ought
to have [18]. This effect should not be mixed up with probability misesti-
mation: probability weighting even affects decisions where the probabilities
are known and do not have to be estimated. In this section we add proba-
bility weighting and observe its effects on the qualitative features of optimal
structured products.

First, we need to distinguish two models of probability weighting:

1. We consider the return distribution of the structured product and apply
a probability weighting to it.

2. We apply probability weighting to the return distribution of the under-
lying.

Both approaches are a priori reasonable, but lead to very different results. In
particular, in the first case, the monotonicity result of Theorem 3 still holds,
thus the payoff function is still monotonic. In the second case, however,
this is no longer the case, since the utility becomes in a certain sense state
dependent. With this form of probability weighting we can therefore explain,
for instance, the attractiveness of constructions that give high payoffs for
extreme events (which are overweighted by the probability weighting), in
particular straddles.

Nevertheless, the payoff is still (essentially) a function of the underlying:
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Theorem 4. Assume that the return of the market portfolio is an absolutely
continuous measure with a smooth distribution function p which is nowhere
equal to zero. For an investor with a smooth utility function (possibly with
a reference point depending on the initial wealth) and a probability weighting
of the underlying with a smooth probability weighting function w, an optimal
structured product has a piecewise smooth payoff function14 of the underlying
market portfolio.

Proof. Let p∗ denote the return distribution of the market portfolio after
probability weighting has been applied. More precisely, in cumulative prospect
theory we define15

p∗(x) :=
d

dx

(
w

(∫ x

−∞
p(t) dt

))
.

Similarly, in prospect theory (see [18, 19, 25]), we define for γ ∈ (0, 1]:

p∗(x) :=
p(x)γ∫

R p(x)γ dx
.

Now in both cases it is easy to see that p∗ is smooth and nowhere zero. We
define w∗(x) := p∗(x)/p(x). Then the optimal structured product maximizes

U(p) :=

∫
R
u(y(x))p∗(x) dx,

subject to ∫
R
y(x)

`(x)

w∗(x)
p∗(x) dx = R. (6)

From the co-monotonicity result [23], we know that the maximizer y of this
problem is a monotonic function (remember that p is absolutely continuous)
of `(x)/w∗(x). Since w∗ is smooth, we can differentiate this expression and
arrive at

d

dx

(
`(x)

w∗(x)

)
=
`′(x)w∗(x)− `(x)w′∗(x)

w∗(x)2
,

which is a smooth function, thus y is piecewise smooth.
This result implies in particular that y is still a function of the market return.
This has a strong consequence: some of the most popular classes of products,
namely all products with path-dependent payoff (in particular barrier reverse
convertibles and bonus certificates), still cannot be explained by this model!

14This means that the payoff function can have finitely many jumps, but is smooth
everywhere else.

15We could also use a decumulative function in gains as in the original formulation
in [29], but both is mathematically equivalent if we choose w differently in gains and
losses.
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3.4 Betting against the market

We have seen from the results in the previous sections: if we want to under-
stand why investors buy structured products like barrier reverse convertibles
or basket products, we need to take into account other factors than just risk
preferences.
One such factor is disagreement with the market beliefs: so far we have al-
ways assumed that investors don’t know better than the market and thus
the physical return distribution p is also used in their estimate of the util-
ity. If both are different, we label this as “betting against the market” or
“speculation”. Believing that the market will behave differently than the
probability distribution p forecasts might be wise in some circumstances, but
it is probably much more frequently a sign of overconfidence – an all too
common characteristics of private investors.
First, we notice that the monotonicity result (Theorem 3) does not hold
anymore, since it relied on the homogeneity of the beliefs. In fact, we have
to change our model. Fortunately, we can use essentially the same idea as
with probability weighting: let us denote the estimated probability of the
investor by p̃, then his optimization problem becomes

Maximize U(y) :=

∫
R
u(y(x))p̃(x) dx,

in L1(R, `p) subject to ∫
R
y(x)`(x)p(x) dx = R. (7)

Defining w(x) := p(x)/p̃(x) and ˜̀(x) := w(x)`(x) we can transform this
problem to

Maximize U(y) :=

∫
R
u(y(x))p̃(x) dx,

subject to ∫
R
y(x)˜̀(x)p̃(x) dx = R. (8)

This new problem can now be solved in the same way as above. As with
probability weighting, we do not necessarily have a monotonic payoff func-
tion, but the fact that the optimal SP can be described by a payoff function
still holds:
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Corollary 3. Assume that the return of the market portfolio is an abso-
lutely continuous measure with a smooth distribution function p which is
nowhere equal to zero. Let p̃ be a smooth return distribution estimated by
the investor. Assume that the investor has a smooth utility function then an
optimal structured product is a piecewise smooth function of the underlying
market portfolio.

Proof. The proof follows the same idea as the proof of Theorem 4.
Moreover, we can give a condition on w under which the optimal y is mono-
tonic if we assume that ` is positive and decreasing (as, e.g., in the Black-
Scholes model or in CAPM for not exceedingly large returns): using the
co-monotonicity we know that y is monotonic whenever ˜̀is a decreasing func-
tion. This is the case if ˜̀′(x) = `′(x)w(x) + `(x)w′(x) < 0. Since w(x) > 0,
`′(x) < 0 and `(x) > 0, this holds particularly when w′(x) < 0, i.e.

p(x)′p̃(x) + p(x)p̃′(x) < 0. (9)

Example 1 (Optimism and pessimism). Let p and p̃ be normal distribu-
tions. If the investor is optimistic, i.e. var p = var p̃, but E(p) < E(p̃), then
condition (9) is satisfied, thus the optimal y is an increasing function of the
market index. If E(p) > E(p̃), the condition is violated, thus y may be
non-monotonic.

Example 2 (Over- and underconfidence). Let p and p̃ be normal distribu-
tions. If the investor is overconfident in the sense of too narrow probability
estimates, i.e. var p > var p̃, but E(p) = E(p̃), then condition (9) is satisfied
for all x > E(p), thus the optimal y is an increasing function of the market
index for x > E(p). If var(p) < var(p̃, this is the case for x < E(p).

Figure 11 shows examples of optimal SPs for CRRA investors (α = −2) with
different beliefs.

3.5 Probability mis-estimation

Betting against the market can explain the popularity of some investments
(like yield enhancing (call option style) or contrarian (put option style) prod-
ucts), but it seems less likely that it can explain the popularity of complicated
constructions like barrier reverse convertibles. Here a better explanation is
probability mis-estimation. The difference to betting is that it is not caused
by a difference in beliefs, but rather a difficulty to translate (potentially ac-
curate) estimates on the market into correct estimates on probabilities for
certain events that are important for the payoff of a structured product.
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Figure 11: Optimal payoff diagrams for investors with pessimistic to opti-
mistic estimations. E(p̃) = 1.00, 1.05, 1.09, 1.13 and E(p) = 1.09.

As an example we consider products with a barrier (e.g. barrier reverse con-
vertibles). These are products that have a capital protection that vanishes
when the price of the underlying at some point before maturity falls below
a certain threshold (“barrier”), compare Fig. 13a. These products are very
popular, as we have seen, although their payoff at maturity is not a function
of the final price of the underlying and thus they are not optimal for any
decision model (see above), even though a prospect theory or aspiration level
like utility comes close to this payoff profile.

Probability mis-estimation can explain this popularity: it has been experi-
mentally demonstrated in [23] that test subjects underestimate the probabil-
ity that the barrier is hit at some point in time before maturity with respect
to the probability that the prize is below the barrier level at maturity. This
makes barrier reverse convertibles seemingly more attractive and can thus ex-
plain why behavioral preferences alone (without modeling the misestimation
of probabilities) cannot explain their popularity.

This is not the only class of popular structured products that conflicts with
the rational and behavioral frameworks we have developed. Another impor-
tant example where probability misestimation seems to play an important
role are basket products, e.g. products which return in certain situations the
value of the worst performing stock of a predefined basket of assets. Experi-
mental work on this class of products is ongoing [24].
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3.6 A classification of structured products

Our results can be used to classify SPs according to their attractiveness
for rational and irrational investors. In the “family picture” of structured
products we mark certain properties that our analysis found important for
the theoretical attractiveness of structured products, see Fig. 12 and Fig. 13).
Here we assumed (in favor of the investors’ rationality) that all SPs have the
market index as underlying16.
In this way, we can classify all SPs into several categories, according to the
degree of deviation from rational preferences that we need to explain their
attractiveness to investors. The overall conclusion is that at least17 30.5%
of the issued SPs in Germany and 48.6% in Switzerland have jumps in their
payoff diagrams (pointing to non-concave utility functions of investors), 3.1%
(resp. 25.8%) have non-monotonic payoff functions18 (pointing to heteroge-
neous beliefs), 36.2% (resp. 48.6%) cannot be described by a function of the
underlying (suggesting systematic probability misestimation as investment
motif), finally, 76.6% (resp. 61.6%) have non-convex payoffs (pointing to
increasing absolute risk aversion), see Table 6 and 7 (appendix) for details.
We could sum up these examples by saying that the most popular classes of
structured products combine in a clever way prospect theory-like preferences
(in particular loss-aversion and risk-seeking behavior in losses) and proba-
bility mis-estimation induced by a complicated payoff structure that leads
to a systematic underestimation of the probability for unfavorable outcomes.
Hence we have argued that SPs reflect the importance of non-traditional
utility functions and of behavioral biases.

4 What structured products would investors

choose if they understood them?

Taking real sales or emission data of structured products as foundation for
theories on investor preferences is in so far limited as it does neither take into
account the marketing efforts of banks, that may substantially vary for dif-

16In fact, this is a very optimistic assumption, since most have single assets or even
worst-of baskets as underlying which makes is even clearer that betting and misestimation
play pivotal roles in investment decisions for structured products: for the German market
we know, e.g., that as of November 2007 only 25.0% of the structured products used a
market index as underlying.

17Products with unclear payoff profile could increase these numbers.
18Contrary to the previous sections, we consider a payoff monotonic if the payoff as

function of the underlying is increasing in each scenario, thus also barrier products can be
considered as monotonic in this sense. Otherwise the numbers would be much higher.
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(a) Discount Certificates

co-monotone; non-convex;
can be explained by in-
creasing ARA

(b) Bonus-/partially pro-
tected products

non-co-monotone; can only
be explained by combina-
tion of non-concave utility
and probability misestima-
tion

(c) K.O. products with
stop loss

can be explained by specu-
lation

(d) K.O. products without
stop loss

can be explained by specu-
lation

(e) Reverse convertibles

co-monotone; non-convex;
can be explained by in-
creasing ARA

(f) Exotic leverage

co-monotone; non-convex;
can be explained by in-
creasing ARA

Figure 12: The list of the most popular structured products on the German
market and an explanation of their attractiveness, based on our results.

ferent product types, nor the availability of structured products. Laboratory
experiments on the other hand suffer from sample selection (typically they
are conducted with undergraduate students and not with real investors) and
from a lack of real incentive. We had the unique chance to conduct a field
study and to collect data in a rather unusual way: during the 175th anniver-
sary event of our university a week-long exhibition at a central location in
downtown Zurich took place where we presented a multi-touch table for the
design of structured products.19 For a screenshot of the structured product

19The hardware and the user interface had been designed for us by the Swiss Design
Institute for Finance and Banking. The core programming was done by the institute for
computer science at the University of Zurich.
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(a) Barrier reverse convert-
ibles

non-co-monotone; can only
be explained by increasing
ARA plus probability mis-
estimation

(b) Tracker certificates

co-monotone; convex; opti-
mal for CARA (in Black-
Scholes model)

(c) Bonus certificates

non-co-monotone; can only
be explained by combina-
tion of non-concave utility
and probability misestima-
tion

(d) Mini futures

can be explained by specu-
lation

(e) Discount certificates

co-monotone; non-convex;
can be explained by in-
creasing ARA

(f) Uncapped capital pro-
tection

co-monotone; convex; can
be explained by loss-aver-
sion

Figure 13: The same illustration for the Swiss market.

editor see Fig. 18 in the appendix. The visitors who tried our multi-touch
table were obviously self-motivated and typically interested in financial in-
vestments. N = 322 persons stated their gender out of which 69.9% were
male and 30.1% female. All age groups were represented (average age was
35 years, standard deviation 17 years).

The program introduced the concept of payoff diagrams and structured prod-
ucts, then went on to let the visitor design a structured product by inter-
actively editing its payoff diagram. The underlying was fixed as the SMI
with one year maturity, pricing according to Black-Scholes. Backtesting and
re-editing was possible, see the appendix for details, thus we can be confi-
dent that the participants understood well what structured products are and
how they work. The resulting payoff curves were recorded, together with the
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visitors’ answers to three lottery questions (as proxy for their risk attitudes),
reasons why they might want to invest into structured products and some
demographic data (gender, age group and education).

The total data comprised N = 684 data sets, out of which N = 233 were
complete (including answers to the demographical questions and the lottery
tasks). Due to the uncontrolled situation at the exhibition it is not surprising
that there were a few “playful” designs, so after data cleaning (taking out
SPs with excessive fluctuations, i.e. volatility above 50) N = 219 out of the
233 complete data sets remained.

What are the characteristics of the designed products? First, we checked for
properties that optimal SPs should satisfy according to the theory. Since we
assumed a payoff function on the SMI we avoided a large class of non-optimal
products. Nevertheless 47.7% of the self-designed SPs were non-monotonic
(pointing to betting as motif) and 9.2% (4.7% of the monotonic products)
showed a clear jump (pointing to non-concave utility functions). We also
asked participants to state how much three potential reasons (diversifica-
tion, portfolio insurance, speculation) would contribute to their decision to
buy structured products where we used the same questions as in [11]. The
most popular motif in our sample was portfolio insurance with an average
rate of 4.0 on a scale from 1 (not at all important) to 5 (very important).
However, 45.2% of the participants gave 4 or more points to speculation, un-
derlining the importance of betting for explaining attractiveness of structured
products.

Product type Chosen by
Capital protection without cap 49.0%
Capital protection with cap 18.9%
Straddles 6.8%
Tracker certificate (bear) 5.8%
Outperformance certificate with cap 3.9%
Outperformance certificate without cap 2.9%
Tracker certificate (bull) 1.9%
Others 10.8%

Table 5: Choices of structured product categories by the participants of our
field study. Complex products (e.g. products with barriers) could not be
constructed with our tool and are consequently missing in this list.

Manual matching the SPs to classical categories resulted in a distribution of
the most popular types as shown in Table 4, giving yet another family picture
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of structured products, that by construction excludes all barrier products and
similarly complex structures.

In the next step, we averaged over all monotonic payoff functions to get a
simple proxy for the favorite structured product of the “representative agent”
(see Fig. 14) which looks similar to a capped capital protected product and
has features of a “covered call” which had been found to be popular among
investors buying options (compare [27] for an empirical study). The payoff
pattern points to increasing absolute risk aversion in gains and decreasing
absolute risk aversion in losses (compare Theorem 2).
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Figure 14: The average structured product as designed by the participants of
our experiment (line) with 95% confidence intervals (circles). Only products
with a monotonic payoff have been considered to take out obvious instances
of speculative motifs.

It is possible to compute the corresponding utility function (or more precisely
its concave envelope which we denote in the following for simplicity by u) for
which this SP is optimal. To this end we need to take the inverse approach
of the optimization procedure. We start from the derivation of (2) where we
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had u′(y(x)) = λ`(x). Since the preferences of expected utility functions are
invariant under affine transformation, we can set λ = 1, thus we obtain the
following result:

Remark 1. Let y be the optimal structured product for an expected util-
ity maximizer with market beliefs, then the concave envelope of his utility
function can be computed as

u′(z) = `(y−1(z)).

Assuming that `(x) is strictly decreasing in x and positive (as in Black-
Scholes), we can derive that a jump in y corresponds to a convex part of u
(i.e. u′ is constant). A capped y (i.e. y is constant above a certain threshold
x0) corresponds to u constant above y(x0).

In our experiment the pricing was computed with the Black-Schoels model,
thus we assume `(x) = Ae−Bx with A,B > 0. It is now easy to compute
u′ (and hence u) from y. As an example let us consider the case y(x) = x.
Then u′(x) = Ae−Bx, i.e. u(x) = −(A/B)e−Bx, i.e. a direct investment in the
stock market is optimal for an investor with CARA utility.20

We can do the same computation for the average SP from our experiment
and obtain the concave envelope of the utility as illustrated in Fig. 15. In
Fig. 16 we plot the corresponding Arrow-Pratt risk aversion −u′′(x)/u′(x)
(scaling is return−1). It is decreasing for losses and increasing for gains –
as expected by the convex-concave shape of the SP. Figure 17 shows the
relative risk aversion −x · u′′(x)/u′(x) where we assume that the complete
wealth is invested into the structured product. It is decreasing in the loss
domain and increasing in the gain domain with a minimum value around 2.
Assuming that only half of the wealth are invested in the structured product
and the rest is invested risk-free would correspond to a minimum relative
risk aversion of around 4 (corresponding to α = −3 if u(x) = xα/α).

One might wonder whether the strict concavity of the utility that we com-
puted does not imply that non-concave utility functions were not needed
in our analysis. However, we remind that the concavity only holds for the
average u where non-concavities of individuals average out.

20It is interesting to compare this result with the case of CAPM: there the optimal
SP was an affine function of the market index for an investor with quadratic utility, i.e.
mean-variance preferences.
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Figure 15: The expected utility function implied by the average structured
product from our experiment where only products with monotonic payoff
have been considered.
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Figure 16: The absolute risk aversion of the average structured product from
our experiment: decreasing in losses, increasing in gains.
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Figure 17: The relative risk aversion of the average structured product from
our experiment: decreasing in losses, increasing in gains (under the assump-
tion that all wealth is invested into this product).

5 Conclusions

We have seen that structured products can arise as a solution to enhancing
the performance of a portfolio. Depending on the (rational) risk attitudes
of an investor it is usually good to use a product that leads to a strictly
convex payoff structure for the risky part of the portfolio. This can be done
by hedging against losses of different degrees. We estimate the size of the
improvement when comparing to a classical Markowitz-style (mean-variance)
investment and found that the improvement is typically smaller than the
costs of structured products.

Most popular structured products, however, do not follow this rational guide-
line, but instead use behavioral factors, like loss-aversion or probability mis-
estimation to be attractive in the eyes of potential investors. In particular
we could show that the currently most popular products clearly cannot be
explained even within the framework of prospect theory, but only when tak-
ing into account probability mis-estimation. Thus we come to the conclusion
that by and large the market for structured products, which is a huge busi-
ness for banks, offers a utility gain for investors which is most likely only an
illusion. Instead of banning structured products completely (as it is currently
discussed in some countries), we would suggest to improve the understanding
of customers (as we have done, e.g., with our multi-touch table application).
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Also it would be wise to introduce independent rankings that enable spe-
cific types of investors to see whether structured products add value to their
portfolio or not.
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[9] Kai Detlefsen, Wolfgang Härdle, and Rouslan Moro. Empirical pricing
kernels and investor preferences. Discussion Paper 2007-017, HU Berlin,
SFB 649, 2007.

[10] Philip H. Dybvig. Distributional analysis of portfolio choice. The Jour-
nal of Business, 61(3):369–393, 1988.
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A Screenshot of the SP editor

Figure 18: A screenshot of the structured product editor (a single-touch ver-
sion can be accessed online at http://www.sdfb.ch/projects/2008/speditor/).
The curve can be manipulated by dragging the little balls and is thereby
auto-adjusted according to the Black-Scholes formula. Mean and standard
deviation (“Mittelwert” and “Standardabweichung”) of the underlying Swiss
Market Index were displayed and explained. The test subjects could run
simulations for various years (2000–2007) to backtest their product before
settling for a final design.
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B Number of issued structured products in

Germany and Switzerland

Category Issued

Increasing, convex function of underlying, no jumps

(risk optimization, non-increasing ARA)

Guarantee certificates 1,857

Index certificate 1,998

Outperformance certificates 2,219

Subtotal 3.5%

Same but not convex (risk optimization, increasing ARA)

Reverse convertible 6,155

Discount certificates 66,511

Subtotal 42.3%

Not necessarily increasing (potentially speculation)

Exotic leverage 5,319

KO products with stop loss 24,161

Subtotal 17.2%

Several scenarios, in each scenario increasing function of underlying

(probability misestimation)

Basket certificates 1,569

Bonus-/partial proetction cert. 52,321

Subtotal 31.4%

Not classifiable

KO product w/o stop loss 8,281

Others 1,434

Subtotal 5.7%

Table 6: Approximate distribution of structured products issued in Germany

according to normative and behavioral categories.



41

Category (according to SVSP classification [1].) Issued

Increasing, convex function of underlying, no jumps

(risk optimization, non-increasing ARA)

Tracker Certificate 8513

Outperformance Certificate 375

Uncapped Capital Protection 2983

Capital Protection with Coupon 170

Subtotal 25.4%

Same but not convex (risk optimization, increasing ARA)

Airbag Certificate 58

Discount Certificate 3750

Reverse Convertible 1376

Capped Outperformance Certificate 123

Capped Capital Protection 303

Subtotal 11.8%

Not necessarily increasing (potentially speculation)

Spread Warrant 61

Mini-Future 4335

Subtotal 9.3%

Several scenarios, in each scenario increasing function of underlying

(pointing to probability misestimation)

Knock-Out Warrant 2224

Bonus Certificate 4666

Barrier Discount Certificate 407

Barrier Reverse Convertible 14428

Capped Bonus Certificate 494

Subtotal 46.9%

Partially decreasing function of underlying (speculation)

Barrier Range Reverse Convertible 476

Twin-Win Certificate 342

Subtotal 1.7%

Not classifiable:

Diverse Leverage, Diverse Participation, Express Certificate,

Diverse Yield Enhancement, Diverse Capital Protection, Diverse Product

Subtotal 4.8%

Table 7: Approximate distribution of structured products issued in Switzer-

land according to normative and behavioral categories.


