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1 Introduction

Over decades the assumption that investors can trade continuously has been central to the

theory of modern finance. In the history of trading at the stock exchanges, there are however

examples where liquidity tried out or trading has been (virtually) not possible for a number of

reasons, including political turmoil, war, or hyperinflation. For instance, after World War II,

the Tokyo stock exchange was closed from August 1945 until May 1949 and it reopened with

a loss of 95% compared to the pre-war stock prices. Besides, the stock exchanges of European

countries that had been invaded by Germany were closed down for some months. The same is

true for the German stock exchanges that were closed for at least sixth months. Even the Swiss

Stock Exchange closed from 10 May 1940 until 8 June 1940 and reopened with a loss of over 20%.

Similarly, during the First World War several European stock exchanges were temporarily closed

and even the NYSE closed for 4.5 months (31 July 1914 - 28 November 1914). Recently, the

NYSE was closed for four days after the terrorist attacks of 9/11 and reopened on 17 September

setting a record volume of 2.37 billion shares. The US stock market lost almost 10% of its value.

This example shows that trading breaks can induce strong wishes to rebalance portfolios and

may be accompanied by sharp price drops. The goal of this paper is to analyze the portfolio

decision of an investor facing the threat of trading interruptions. As documented in the data,

we allow for jumps in the market prices at the advent and the end of a trading interruption.

The following table summarizes some examples.1

Exchange Trading Break Comment

London 07/1914 - 01/1915 WW I

New York 08/1914 - 11/1914 WW I

Zurich 05/1940 - 06/1940 WW II (Mobilization)

Frankfurt 04/1945 - 09/1945 Aftermath of WW II

Tokyo 08/1945 - 05/1949 Aftermath of WW II

New York 09/11/2001 - 09/14/2001 Terrorist Attack

Table 1: Examples for Major Trading Breaks

There are several related papers modeling liquidity effects explicitly. One strand of literature

weakens the assumption that investors are price takers. In these models, trading takes place

continuously, but large traders cannot trade without inducing price impacts. Papers dealing
1See, e.g., Frey and Kucher (1999), Jorion and Goetzman (1999), Siegel (2002). The are several other examples.

For instance, Jorion and Goetzman report that in Germany, Italy, and German-occupied territories dealing in

shares was subject to strict controls during WW II leading to a sharp fall in liquidity.
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with this issue include Bank and Baum (2002) and Cetin et al. (2004), among others. A second

strand of literature introduces transaction costs into the model implying that it is not optimal

for investors to trade continuously. Papers in this area include Duffie and Sun (1990), Davis and

Norman (1990), and Korn (1998), among others. Besides, Longstaff (2001) looks at the portfolio

problem of an investor who can only implement portfolio strategies with finite variation and thus

faces liquidity constraints. Schwartz and Tebaldi (2006) assume that an investor cannot trade

a risky asset at all, i.e. the trading interruption is permanent. Examples are human wealth

or housing. Closely related to our paper are the papers by Kahl et al. (2003) and Longstaff

(2005). Kahl et al. (2003) consider an investor’s portfolio problem where the advent of a trading

interruption is known and Longstaff (2005) analyzes the implications for the equilibrium prices

of assets in such a setting. The problem presented in Kahl et al. (2003) can be solved recursively

(firstly solve the problem in the absorbing state and then solve the problem for the non-absorbing

state by using the solution of the absorbing state as boundary condition). In contrast to that,

to the best of our knowledge, our paper is the first one solving a problem where both states

(trading and non-trading state) are recurrent. This is particularly relevant from an economical

point of view, since during political turmoils or wars markets may close and reopen several times

and nobody knows in advance how often this will take place. For instance, after 9/11 it was not

obvious whether a second wave of terrorist attacks could soon hit the United States of America.

Besides, the problem is mathematically more involved, since it cannot be solved recursively any

more.

Furthermore, our paper is also related to the asset pricing literature dealing with the equity

premium puzzle. In particular, Rietz (1988) and recently Barro (2005) point out that the puzzle

can (partly) be resolved if investors take into consideration the potential for a rare economic

disaster occurring with a small probability. Barro (2005) writes that “a worthwhile extension

would deal more seriously with the dynamics of crisis regimes”. Since we model two distinct

regimes explicitly (normal and illiquidity), our paper also contributes to this strand of literature.

Additionally, a later section demonstrates how our model can be extended to include three

regimes (normal, crisis, illiquidity).

Our paper contributes to the existing literature in multiple ways: The efficiency loss due to

illiquidity is addressed and we are able to quantify the impact of illiquidity on an investor’s

portfolio decision. We show that the efficiency loss for a logarithmic investor with 30 years

until the investment horizon is a significant 22.7% of current wealth if the illiquidity part of the

model is calibrated to the Japanese data of the aftermath of WW II. Besides, we demonstrate

that the threat of illiquidity can change the demand for risky securities tremendously. Finally,

we are able to solve a continuous-time multi-state portfolio problem and present an (almost)

closed-form solution to a system of coupled Hamilton-Jacobi-Bellman equations.

The remainder of the paper is structured as follows. Section 2 describes the continuous-time

framework. Section 3 introduces the investor’s portfolio problem and derives its solution. In
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Section 4, our results are illustrated by numerical examples and the efficiency loss due to illiq-

uidity is analyzed. Section 5 briefly discusses an extension of our model to a setting with three

regimes. Section 6 concludes. All proofs can be found in the Appendix.

2 Continuous-Time Framework

We consider a simple two-asset securities market. The first asset is a (locally risk-free) money

market account and the second one is risky (stock or stock index). The economic regimes are

characterized by a finite set of states, where, by convention, 0 is the initial state at time 0. The

process Z(t) denotes the state at time t and we assume that Z is a right-continuous process

with left limits. The associated (J + 1)-dimensional counting process N = (Nk)k∈J defined by

Nk(t) = #{s|s ∈ (0, t],Z(s−) 6= k,Z(s) = k}

is also right-continuous with left limits. Note that Nk counts the number of transitions into

state k. For reasons that become clear later on, we do not restrict our model to only two states.2

The money market account (syn. bond) and the stock index (syn. stock) possess the dynamics

dM = MrZdt,

M(0) = 1, and3

dS = S−
[
µZdt + σZdW −

∑

k 6=Z−
LZ−kdNk

]
,

S(0) > 0, where W is a Brownian motion and we allow the interest rate rZ , the expected mean

µZ , and the volatility σZ to depend on the economic regime. The constant Ljk models the jump

size of the stock price upon transition from state j into state k. The wealth dynamics of an

investor putting his funds into bonds and stocks read

dX = X−
[
(rZ + παZ)dt + πσZdW −

∑

k 6=Z−
πLZ−kdNk

]
,

where αZ = µZ − rZ denotes the excess return and π denotes the proportion of wealth invested

in stocks. Denoting the number of shares of the risky asset by ϕ, we thus have π = ϕS/X.

We restrict our set of admissible trading strategies to those satisfying π ∈ [0, 1], i.e. short sales

of the risky asset are prohibited.4 This assumption also excludes any strategy that allows the

possibility of zero wealth, which is in line with Dybvig and Huang (1988). Furthermore, it is

2For instance, jumps within a state can be modeled by an enlargement of the state space such that a two

state model turns into a four state model. This is so because a Poisson process can be represented by a two-state

Markov chain.
3To shorten notation, we usually write Y instead of Y (t) and Y − instead Y (t−) if Y is a stochastic process.
4Proposition 3.2 provides a sufficient condition such that short sales are not optimal. Our numerical results

show that for reasonable parametrizations of the model short sales are not optimal.
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assumed that the investor maximizes expected utility from terminal wealth at final time T with

respect to a logarithmic utility function U(x) = ln(x). Such an investor is characterized by the

fact that, in general, he makes myopic portfolio decisions if he can trade continuously. As will

be shown later on, this result breaks down if he faces the threat of illiquidity.

As in Merton (1969, 1971), in normal times trading takes place continuously. However, there is

a threat that a catastrophic event like a war or a terrorist attack hits the economy triggering

a shutdown of the exchange where the risky asset is traded. In this case, the investor is not

able to buy or sell his assets and is forced to stick to the portfolio that he has chosen before the

liquidity breakdown. If the investor reaches his retirement age while the exchange is closed, then

he can liquidate his risky assets only by suffering a loss of lϕS = lπX, where l ∈ [0, 1] denotes

the loss rate. For instance, if l = 1, then the investor would lose all his money invested in stocks.

We emphasize that, as long as the exchange is closed, the proportion invested in stocks is not

a choice variable, but exogenously given. The following lemma provides an explicit solution for

its dynamics.

Lemma 2.1 (π-dynamics) For a fixed number of stocks, the proportion invested in stocks

follows the dynamics

dπ = π−(1− π−)
[
(αZ − σ2

Zπ)dt + σZdW −
∑

k 6=Z−

LZ−k

1−π−LZ−k
dNk

]
. (1)

This stochastic differential equation (SDE) has the closed-form solution π(t) = 1/(1+Z(t)) with

dZ = Z−
[
(σ2
Z − αZ)dt− σZdW +

∑

k 6=Z−

LZ−k

1−LZ−k
dNk

]
.

Remark. This lemma shows that π remains between 0 and 1 if this is so for the initial value

and the loss rates Ljk. Note that Z becomes a geometric Brownian motion if the loss rates are

zero.

3 Portfolio Decision

By assumption, the investor maximizes expected utility from terminal wealth with respect to a

logarithmic utility function U(x) = ln(x). We firstly consider a model with two regimes, normal

(state 0) and illiquidity (state 1), and assume that trading comes to a halt in the illiquidity

regime.5 The liquidity breakdown occurs with intensity λ01, whereas a subsequent recovery of

the economy can happen with intensity λ10. We allow the stock dynamics to follow a jump-

diffusion process in state 0 and denote the corresponding jump size by L0 and the jump intensity
5In a later section, we include a crisis regime in which trading is still possible. This could be done by adding

a state to the state space J .
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by λ0.6 Upon transition into the illiquidity state, the stock price may also jump by L01 and

the diffusion parameters change from α0 and σ0 into α1 and σ1. In the illiquidity state, the

stock also follows a jump-diffusion and the corresponding jump is denoted by L1 and the jump

intensity by λ1.

[INSERT FIGURE 1 ABOUT HERE]

Denoting the investor’s indirect utility function (syn. value function) in the normal regime by7

J0(t, x) = max
π

Et,x
0 [U(Xπ(T ))],

it thus satisfies the Hamilton-Jacobi-Bellman equation (HJB)

0 = max
π

{
J0

t + x(r0 + α0π)J0
x + 0.5x2π2(σ0)2J0

xx (2)

+λ01[J1
(
t, x(1− πL01),

(1−L01)π
1−L01π

)− J0(t, x)] + λ0[J0(t, x(1− πL0))− J0(t, x)]
}

with terminal condition J0(T, x) = U(x). Here,

J1(t, x, π) = Et,x,π
1 [U(Xπ(T ))]

denotes the investor’s indirect utility function in the illiquidity regime (state 1). We emphasize

that, in this regime, the proportion invested in stock, π, is not at the discretionary of the investor

any more and thus becomes a state variable.8 This also implies that the last argument of J1 in

the HJB (2) equals (1−L01)π
1−L01π , since

π =
ϕS

X
=

ϕS−(1− L01)
X−(1− π−L01)

= π−
(1− L01)
1− L01π−

.

The HJB in the illiquidity state reads

0 = J1
t + x(r1 + α1π)J1

x + 0.5x2π2(σ1)2J1
xx + xπ2(1− π)(σ1)2J1

xπ (3)

+π(1− π)(α1 − (σ1)2π)J1
π + 0.5π2(1− π)2(σ1)2J1

ππ

+λ10[J0(t, x(1− πL10))− J1(t, x, π)]

+λ1[J1
(
t, x(1− πL1),

π(1−L1)
1−πL1

)− J1(t, x, π)]

with terminal condition J1(T, x, π) = U(x(1 − lπ)), where l models liquidation costs. We

conjecture J0(t, x) = ln(x) + f0(t) and J1(t, x, π) = ln(x) + f1(t, π) with f0(T ) = 0 and

6From now one, we use a mixture of a jump-diffusion model and a two-state Markov chain for notational

convenience. As mentioned in Section 2, the jumps can equivalently be modeled by enlarging the state space of

the Markov chain, i.e. by considering a four state Markov chain.
7The notation Et,x

j means that expectation is taken under the assumption that at time t the Markov chain is

in state j and that the investor’s current wealth equals x.
8Note the difference between the state variables of an HJB and the state of a Markov chain.
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f1(T, π) = ln(1− lπ). Then HJB (2) becomes

0 = max
π

{
f0

t + r0 + α0π − 0.5π2(σ0)2 (4)

+λ01

[
ln(1− πL01) + f1

(
t, (1−L01)π

1−L01π

)− f0(t)
]

+ λ0 ln(1− πL0)
}

.

This leads to the following first-order condition (FOC) for the optimal stock proportion π∗ in

state 0.

0 = α0 − σ2
0π∗ − λ01

L01
1−π∗L01

+ λ01f
1
π

(
t, (1−L01)π

∗

1−L01π∗
)

1−L01
(1−L01π∗)2 − λ0

L0
1−π∗L0

. (5)

It is well-known that, in general, a logarithmic investor makes his investment decisions myopi-

cally if continuous-trading is possible. The FOC, however, shows that the threat of illiquidity

turns this myopic behavior into a non-myopic one. Note that π∗ is a deterministic function of

time t. We shall later prove that under some technical conditions the FOC has a unique solution.

Furthermore, (3) becomes

0 = f1
t − λ10f

1 + π(1− π)(α1 − (σ1)2π)f1
π + 0.5π2(1− π)2(σ1)2f1

ππ

+λ1[f1(t, π(1−L1)
1−πL1

)− f1(t, π)] + g1(π) + λ10f
0,

where g1(y) = r1 +α1y−0.5y2(σ1)2 +λ1 ln(1−yL1)+λ10 ln(1−yL10) is a real-valued function.

For this reason, we get the following stochastic representations for f1 and f1
π .

Proposition 3.1 (Indirect Utility in the Illiquidity Regime) (i) The function f1 possesses

the stochastic representation

f1(t, π) =
∫ T

t

(λ10f
0(s) + Et,π

1 [g1(π̃(s))]) e−λ10(s−t) ds + Et,π
1 [ln(1− lπ̃(T ))] e−λ10(T−t),

where π̃(s) = π/(π + (1− π)Z̃(s)),

dZ̃ = Z̃−
[
(σ2

1 − α1)ds− σ1dW + L1
1−L1

dN̂
]
, Z̃(t) = 1,

and N̂ is a Poisson process with intensity λ1.

(ii) The derivative f1
π is given by

∂f1(t, π)
∂π

=
∫ T

t

Et,π
1

[
∂π̃(s)

∂π g′1(π̃(s))
]
e−λ10(s−t) ds− Et,π

1

[
∂π̃(T )

∂π
l

1−lπ̃(T )

]
e−λ10(T−t),

where ∂π̃(s)/∂π = Z̃(s)/(π + (1− π)Z̃(s))2 denotes the derivative of the process π̃ with respect

to its initial value π̃(t) = π. Consequently, the derivative f1
π does not depend on f0 and thus

(5) provides an algebraic equation for π∗.

Remarks. a) Note that π̃ is an auxiliary process with dynamics

dπ̃ = π̃(1− π̃)
[
(α1 − σ2

1 π̃)dt + σ1dW − L1
1−π̃L1

dN̂
]
, π̃(t) = π(t) = π,
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and that Z̃(s) = e(0.5σ2
1−α1)(s−t)−σ1(W (s)−W (t))/(1− L1)(N̂(s)−N̂(t)).

b) In order to calculate f1
π numerically, the following representation is useful.

∂f1(t, π)
∂π

=
∞∑

n=0

∫ T

t

e−λ10(s−t)pn(t, s)
∫ +∞

−∞
∂π̃n(t,s,ω)

∂π g′1(π̃n(t, s, ω))ψs−t(ω) dω ds

−e−λ10(T−t)
∞∑

n=0

pn(t, T )
∫ +∞

−∞
∂π̃n(t,T,ω)

∂π
l

1−lπ̃n(t,T,ω) ψT−t(ω) dω

where9

g′1(y) = α1 − (σ1)2y − λ1
L1

1−yL1
− λ10

L10
1−yL10

, y ∈ [0, 1],

pn(t, s) = P (N̂(s− t) = n) =
e−λ1(s−t)(λ1(s− t))n

n!
,

ψu(ω) =
1√
2πu

e−
ω2
2u ,

π̃n(t, s, ω) =
π

π + (1− π)z̃n(t, s, ω)
,

∂π̃n(t,s,ω)
∂π =

z̃n(t, s, ω)
(π + (1− π)z̃n(t, s, ω))2

,

z̃n(t, s, ω) =
e(0.5σ2

1−α1)(s−t)−σ1ω

(1− L1)n
.

One central motivation for modeling the randomness of stock dynamics via Brownian motions

is that continuous trading activity of market participants creates this kind of dynamics.10 In

state 1, however, trading is interrupted and thus it seems to be reasonable to set the diffusion

term in state 1 to zero. Besides, we think of state 1 as a regime where the economy is hit by

an extreme event such as a war or a political turmoil. Consequently, it might also be plausible

to assume that α1 ≤ 0. As the following proposition shows, these assumptions together with

(6) are sufficient for the existence of a unique smooth solution of the investor’s portfolio choice

problem.

Proposition 3.2 (Optimal Portfolio) Assume that α1 ≤ 0 and σ1 = 0.

(i) The investor’s indirect utility in state 1 is decreasing and concave, i.e. the derivatives f1
π and

f1
ππ are negative.

(ii) If there exists11 a solution π∗ to the FOC (5), then π∗ is unique and corresponds to the

investor’s optimal portfolio strategy. Besides, π∗ is a deterministic function of time that is

continuously differentiable.
9In the definition of ψu, the variable π equals the constant 3.141 . . . and should not be mixed up with the

stock proportion.
10See, e.g., Foellmer and Schweizer (1994) and the references therein.
11Formally, this means that for each t ∈ [0, T ] there exists a π∗(t) ∈ [0, 1] such that π∗(t) solves the FOC (5).
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(iii) A solution exists if the right-hand side of the FOC is positive for π = 0 and negative for

π = 1, i.e. for all t ∈ [0, T ]

α0 − λ0L0 − λ01L01 + λ01f
1
π(t, 0)(1− L01) ≥ 0, (6)

α0 − σ2
0 − λ0

L0

1− L0
− λ01

L01

1− L01
+ λ01f

1
π(t, 1)

1
1− L01

≤ 0.

Remark. Condition (6) can be rewritten more explicitly as

0 ≤ α0 − λ0L0 − λ01L01 − λ01(1− L01)lE
t,0
1 [1/Z̃(T )]e−λ10(T−t)

+λ01(1− L01)(α1 − λ1L1 − λ10L10)
∫ T

t
Et,0

1 [1/Z̃(s)]e−λ10(s−t)ds,

0 ≥ α0 − σ2
0 − λ0

L0
1−L0

− λ01
L01

1−L01
− λ01

1
1−L01

l
1−lE

t,1
1 [Z̃(T )]e−λ10(T−t)

+λ01
1

1−L01

(
α1 − σ2

1 − λ1
L1

1−L1
− λ10

L10
1−L10

) ∫ T

t
Et,1

1 [Z̃(s)]e−λ10(s−t)ds.

Note that the assumptions α1 ≤ 0 and σ1 = 0 are by no means necessary, but they imply that

f1
π and f1

ππ are negative, which are the key properties used in our proof. Besides, we remark

that condition (6) is satisfied for reasonable choices of α0. However, if α0 is “too large” or “too

small”, then it can happen that this condition is not satisfied. For instance, if α0 is negative,

i.e. an investment in stocks is strictly inferior compared to an investment in bonds, then the

optimal proportion held in stocks is zero, which is a corner solution. These kinds of degenerated

cases are excluded by (6). The following proposition provides an explicit representation of the

investor’s indirect utility function in the normal state.

Proposition 3.3 (Indirect Utility in the Normal Regime) The investor’s indirect utility

in state 0 is given by

J0(t, x) = ln(x) +
λ01

λ01 + λ10
e(λ01+λ10)t

∫ T

t

F (s)e−λ01sds +
λ10

λ01 + λ10

∫ T

t

F (s)eλ10sds,

where

F (t) = g0(π∗(t))e−λ10t + λ01

∫ T

t

Et,π̂0(t)
1 [g1(π̃(s))]e−λ10sds

+λ01E
t,π̂0(t)
1 [ln(1− lπ̃(T ))]e−λ10T

and π̂0(t) = (1−L01)π∗(t)/(1−L01π
∗(t)), g0(π∗) = r0+α0π

∗−0.5(π∗)2(σ0)2+λ0 ln(1−π∗L0)+

λ01 ln(1− π∗L01).

Usually, one has to solve the integrals in the representation for J0 numerically. There is however

a particular situation where an explicit formula for the investor’s indirect utility is achieved. This

is the case for σ1 = α1 = L1 = L0 = L01 = 0. Then the FOC simplifies into

0 = α0 − σ2
0π∗ + λ01

(
(e−λ10(T−t) − 1)

L10

1− π∗L10
− e−λ10(T−t) l

1− π∗l

)
.
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If additionally l = L10, then we get

0 = α0 − σ2
0π∗ − λ01

L10

1− π∗L10

and the investor’s indirect utility is explicitly given by

f0(t) =
λ01

λ01 + λ10
e(λ01+λ10)t

(
(g0(π∗) +

λ01

λ10
g1(π∗))

1
λ01 + λ10

(e−(λ01+λ10)t − e−(λ01+λ10)T )

+(ln(1− L10π
∗)− 1

λ10
g1(π∗))e−λ10T (e−λ01t − e−λ01T )

)

+
λ10

λ01 + λ10

(
(λ01 ln(1− L10π

∗)− λ01

λ10
g1(π∗))e−λ10T 1

λ10
(eλ10T − eλ10t)

+(g0(π∗) +
λ01

λ10
g1(π∗))(T − t)

)
,

where g0(y) = r0 + α0y − 0.5y2σ2
0 and g1(y) = r1 + λ10 ln(1− yL10).

We now shift our attention to the important question of whether the Hamilton-Jacobi-Bellman

equations have smooth solutions. This is established in the following proposition.

Proposition 3.4 (Classical Solutions) Under the assumptions of Proposition 3.2, the func-

tions f0 and f1 are classical solutions of the HJBs, i.e. f0 ∈ C1 and f1 ∈ C1,2.

In our applications, we wish to quantify the utility loss of an investor facing the threat of illiq-

uidity. For the reader’s convenience, we briefly establish the investor’s indirect utility function

in the case that trading is allowed in both states. The investor’s indirect utility functions in

states j ∈ {0, 1} are then given by Jj(t, x) = maxπ Et,x
j [U(Xπ(T ))] leading to the following

result.

Proposition 3.5 (Optimal Solution without Illiquidity) The first-order condition for the

investor’s optimal portfolio strategy π∗j in state j ∈ {0, 1} is given by

0 = αj − π∗j σ2
j − λj

Lj

1− π∗j Lj
− λjk

Ljk

1− π∗j Ljk
.

The investor’s indirect utility in state 0 reads

J0(t, x) = ln(x) +
λ01

λ01 + λ10
e(λ10+λ01)t

∫ T

t

F (s)e−λ01sds +
λ10

λ01 + λ10

∫ T

t

F (s)eλ10sds

where

F (t) = g0(π∗0)e−λ10t +
λ01

λ10
g1(π∗1)(e−λ10t − e−λ10T ),

gj(y) = rj + αjy − 0.5y2σ2
j + λj ln(1− yLj) + λjk ln(1− yLjk).
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4 Numerical Illustrations

One important example for a major trading break is the aftermath of World War II in Japan. At

that time, the Tokyo Stock Exchange was shut down for almost four years reopening with a loss

of more than 90%. Rietz (1988) and Barro (2005), among others, emphasize that these kinds of

events can have a significant impact on security prices in an economy. For this reason, we wish

to quantify the investor’s utility gain expressed in terms of his initial capital when he is able to

trade even in the illiquidity state. More precisely, we calculate the amount of initial capital that

he would be willing to pay in order to be able to trade in all states. Table 2 summarizes our

numerical results for different parametrizations of the model. The column “∆x (%)” contains

the percentage by which the initial capital of 100 can be reduced in order to get the same utility

as in the model where trading is allowed in both states (see Proposition 3.5).

[INSERT TABLE 2 ABOUT HERE]

We assume that the stock dynamics follow a diffusion process in state 0 and are deterministic

in state 1, since σ0 = 0.25, L0 = 0 and σ1 = 0, L1 = 0.12 However, either when entering or

when leaving state 1 the stock loses a fraction of its value, i.e. either L01 > 0 or L10 > 0. The

parameters λ01 and λ10 are chosen in order to mimic situations such as in Japan after WW II.

For instance, the parametrization λ01 = 0.01, λ10 = 0.3, L01 = 0, and L10 = 0.9 implies that, on

average, once in a century the illiquidity state is reached and, on average, this state is left after

3.33 years triggering a stock price decrease of 90%. In this particular case, for an an investment

horizon of T = 30 years, the change of initial capital amounts to over 22%. This is due to the

fact that an investor who is able to trade can avoid the loss that is triggered by a jump from

state 1 to state 0. He will sell his stocks once the economy is in state 1 and thus use the money

market account as a “safe heaven”. If the investor cannot trade, he will not be able to avoid

this loss. For this reason, he invests considerably less of his wealth into the risky asset. Figure

2 depicts the function f1
π(0, ·), as well as the right-hand side of the FOC (5) as a function of π

with t = 0. The column labeled by π∗0,illiq contains the optimal time-0 stock demands in state

0 (liquidity) when the investment horizon is T and trading is not possible once the economy

has jumped into state 1. In contrast to these demands, if trading is allowed in state 1, then the

investor behaves myopically and the optimal stock demand is π∗0,liq = 80% except for the cases

where L10 = 0. As mentioned above, we have π∗1,liq = 0.

[INSERT FIGURE 2 ABOUT HERE]

As λ01 is much smaller than λ10, at time T , we expect the economy to be in state 0. Therefore,

setting l = 0 has only a small impact on the percental change of initial capital, which can be

12Drift and interest rate are in line with Barro (2005).
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seen in the third and fourth line of Table 2. However, if the loss rate L10 increases from 50% to

90%, then the percental change of initial capital increases significantly. Increasing λ10 to 1 only

results in small change indicating that the effect of illiquidity is small if the investor does not

suffer additional losses. The percental change of the initial capital, however, strongly depends

on the intensity λ01 modeling the probability that the exchange is closed. If we interchange the

values of L01 and L10 as well as λ01 and λ10, then the change of initial capital is zero. In this

case, the investor will not hold any risky assets in state 0 independent of whether he can trade

or not. This is so because short-sales are not allowed. Therefore, an investor who is exposed

to the threat of illiquidity will not have any disadvantage. If we only interchange the values

of L01 and L10, we get much smaller percental changes of the initial capital. In this situation,

both investors will hold less stocks in state 0. It is also interesting to note that in this case, the

percental change of initial capital decreases when the loss rate increases. For a higher loss rate

L10, an investor being able to trade loses more money when the economy switches to state 1.

Thus he will benefit less from being able to trade in the illiquidity state 1. Note that, in the

case of α1 = 0, we are in the situation of the example described in Section 3 and thus have an

explicit formula for the investor’s indirect utility.

[INSERT FIGURE 3 ABOUT HERE]

For our second application, we consider a model where the indirect utilities of states 0 and 1

are identical if the investor can trade in both states. This allows us to quantify the mere effect

of illiquidity. As depicted in Figure 3, we thus construct a version of our two-state model in

the following way: Consider an ordinary model where the stock dynamic follow a pure diffusion

process (Merton model). The corresponding variables are denoted by rM , σM , αM . Obviously,

such a model yields the same indirect utility as our two-state model if the investor can trade

in both states, all jumps are set to zero, and r0 = r̂1 = rM , σ0 = σ̂1 = σM , α0 = α̂1 = αM .

We now wish to construct a pure jump model for state 1 that leads to the same indirect utility.

We thus set the volatility in state 1 equal to zero and allow for stock price jumps in state 1.

The variables of the pure jump model for state 1 are denoted by r1, σ1 = 0, α1, λ1 and L1.

Using the conjecture for the indirect utility functions, we now compare the following HJBs for

the diffusion and the pure jump model.

0 = max
π̂1
{f̂1

t + r̂1 + π̂1α̂1 − 0.5π̂2
1 σ̂2

1} (7)

0 = max
π1
{f1

t + r1 + π1α1 + λ1 ln(1− π1L1)}.

Note that the HJBs do not contain a jump term since, by assumption, f0 = f̂1 = f1 and the

loss rate upon transition from state 1 to state 0 equals zero. Differentiating with respect to π̂1

and π1, respectively, yields

π̂∗1 =
α̂1

σ̂2
1

, π∗1 =
1
L1

− λ1

α1
.

11



Substituting these optimal strategies into the equations (7), the indirect utility functions in the

two states are identical if the parameters α1, λ1, and L1 satisfy the following requirement.

r̂1 +
α̂2

1

2σ̂2
1

= r1 +
α1

L1
+ λ1

(
ln

(λ1L1

α1

)
− 1

)
.

For simplicity, we set α1 = α̂1, r1 = r̂1. Then for fixed L1, one can solve the above equation

for λ1. For different parametrization of the model, Table 3 provides the changes of the initial

capital. It can be seen that now the effect of illiquidity is smaller. It increases with λ01 and

decreases with λ10. As Table 4 shows, the impact of illiquidity becomes much more relevant if

the loss rate l is not equal to zero, i.e. if the investor loses a fraction of his funds invested in

stocks given that his investment horizon is reached while the exchange is closed. However, for

l 6= 0, the model is no longer equivalent to the original Merton model. As before, throughout

Table 3 and Table 4 we have π∗0,liq = 80%.

[INSERT TABLES 3 and 4 ABOUT HERE]

5 Three Regimes

As a generalization of the model presented in Section 3, we now consider an economy with three

regimes, normal (state 0), illiquidity (state 1) and a third regime (state 2) in which excess return

and volatility can be different from the corresponding parameters in state 0. For instance, state

2 can model an economic crisis where trading is possible, but the excess return is lower and the

volatility is higher as in the normal state. According to Barro (2005), this is a relevant extension

of the model.

In each state, the stock follows a jump-diffusion process where αi denotes the excess return and

σi denotes the volatility, i ∈ {0, 1, 2}. The size of a relative stock price jump in state i is denoted

by Li and its intensity by λi. Besides, λij stands for the intensity for a regime change from

state i into state j. The corresponding loss rate is denoted by Lij . As before, the investor is

not allowed to buy or sell his assets, while the economy is in the illiquidity regime (state 1).

[INSERT FIGURE 4 ABOUT HERE]

The investor’s indirect utility functions are now given by

Jj(t, x) = max
π

Et,x
j [U(Xπ(T ))], j ∈ {0, 2}, J1(t, x, π) = Et,x,π

1 [U(Xπ(T ))].

For j, k ∈ {0, 2} with j 6= k, we obtain the following Hamilton-Jacobi-Bellman equations for

the three states.

0 = max
πj

{
Jj

t (t, x) + x(rj + πjαj)Jj
x(t, x) + 0.5x2π2

j σ2
j Jj

xx(t, x)
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+λj

[
Jj(t, x(1− πjLj))− Jj(t, x)

]

+λj1

[
J1

(
t, x(1− πjLj1),

(1−Lj1)πj

1−Lj1πj

)− Jj(t, x)
]

+ λjk

[
Jk(t, x(1− πjLjk))− Jj(t, x)

] }
,

0 = J1
t (t, x, π) + x(r1 + πα1)J1

x(t, x, π) + 0.5x2π2σ2
1J1

xx(t, x, π) + xπ2(1− π)σ2
1J1

x,π(t, x, π)

+π(1− π)(α1 − σ2
1π)J1

π(t, x, π) + 0.5π2(1− π)2σ2
1J1

ππ(t, x, π)

+λ1

[
J1

(
t, x(1− πL1),

(1−L1)π
1−L1π

)− J1(t, x, π)
]

+λ10

[
J0(t, x(1− πL10))− J1(t, x, π)

]
+ λ12

[
J2(t, x(1− πL12))− J1(t, x, π)

]
,

with terminal conditions Jj(T, x) = U(x) and J1(t, x) = U(x(1 − lπ)), where l again models

liquidation costs. Setting

gj(y) = rj + αjy − 0.5y2σ2
j + λj ln(1− yLj) +

∑

j 6=k∈{0,1,2}
λjk ln(1− yLjk), j ∈ {0, 1, 2},

we conjecture

J0(t, x) = ln(x) + f0(t), J1(t, x, π) = ln(x) + f1(t, π), J2(t, x) = ln(x) + f2(t)

implying

0 = max
πj

{
f j

t (t) + gj(πj) + λj1

[
f1

(
t,

(1−Lj1)πj

1−Lj1πj

)− f j(t)
]

+ λjk

[
fk(t)− f j(t)

] }
,

0 = f1
t (t, π) + π(1− π)(α1 − σ2

1π)f1
π(t, π) + 0.5π2(1− π)2σ2

1f1
ππ(t, π) + g1(π)

+λ1

[
f1

(
t, π(1−L1)

1−πL1

)− f1(t, π)
]

+ λ10

[
f0

(
t)− f1(t, π)

]
+ λ12

[
f2(t)− f1(t, π)

]
,

for j, k ∈ {0, 2} with j 6= k. This leads to the following first order conditions for the investor’s

optimal portfolio strategies in states 0 and 2, π∗0 and π∗2 .

0 = αj − σ2
j π∗j − λj

Lj

1−π∗
j
Lj
− λj1

Lj1
1−π∗

j
Lj1

− λjk
Ljk

1−π∗
j
Ljk

+ λj1f
1
π

(
t,

(1−Lj1)π
∗
j

1−Lj1π∗
j

) 1−Lj1
(1−Lj1π∗

j
)2

As before, π∗0 and π∗2 are deterministic functions of time t that only depend on f1
π . Furthermore,

we get the following stochastic representation for f1 and f1
π .

Proposition 5.1 (Indirect Utility in the Illiquidity Regime) (i) The function f1 reads

f1(t, π) =
∫ T

t

(λ10f
0(s) + λ12f

2(s) + Et,π
1 [g1(π̃(s))]) e−(λ10+λ12)(s−t) ds

+Et,π
1 [ln(1− lπ̃(T ))] e−(λ10+λ12)(T−t),

where π̃(s) = π/(π + (1− π)Z̃(s)),

dZ̃ = Z̃−
[
(σ2

1 − α1)ds− σ1dW + L1
1−L1

dN1

]
, Z̃(t) = 1

and N1 is a Poisson process with intensity λ1.

(ii) The derivative f1
π is given by

∂f1(t, π)
∂π

=
∫ T

t

Et,π
1

[
∂π̃(s)

∂π g′1(π̃(s))
]
e−(λ10+λ12)(s−t) ds− Et,π

1

[
∂π̃(T )

∂π
l

1−lπ̃(T )

]
e−(λ10+λ12)(T−t),
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where ∂π̃(s)/∂π = Z̃(s)/(π + (1 − π)Z̃(s))2 denotes the derivative of π̃(s) with respect to its

initial value π̃(t) = π.

This time, substituting f1
π into the HJB equations for states 0 and 2 yields a linear system of

two second-order differential equations. As opposed to the setting of only two different states,

by reduction to first-order, we now end up with a four-dimensional system of first-order ODEs.

We are able to explicitly determine the roots of the corresponding characteristic polynomial of

order four and thus may derive a representation of f1 by applying the variation of constants

method and Cramer’s rule. The following proposition provides such an explicit representation of

the investor’s indirect utility function in the normal regime if λ01 = λ21. As mentioned before,

we think of state 1 as being triggered by a catastrophic event leading to a closure of the stock,

whereas state 2 corresponds to an economic crisis during which the investor can still trade.

Thus, λ01 = λ21 means that the occurrence of a catastrophic event does not depend on whether

the economy is currently in crisis or not.

Proposition 5.2 (Indirect Utility in Normal Regime) Assume that λ01 = λ21 and let

λj· =
∑

j 6=k λjk denote the aggregate intensity of leaving state j. The investor’s indirect utility

in state 0 is given by

J0(t, x) = ln(x) + eλ1·t(c1

∫ T

t

e(λ02+λ2·−λ1·)(t−s)(F0(s)− F2(s))ds

+c2

∫ T

t

eλ21(t−s)((λ10 − λ20)F0(s) + (λ12 − λ02)F2(s))ds

+c3

∫ T

t

e−λ1·(t−s)((λ12λ20 + λ10λ2·)F0(s) + (λ02λ1· + λ12λ21)F2(s))ds),

where

Fj(t) = gi(π∗j (t))e−λ1·t + λj1

∫ T

t

Et,π̂j(t)
1 [g1(π̃(s))]e−λ1·sds + λj1E

t,π̂j(t)
1 [ln(1− lπ̃(T ))]e−λ1·T

and π̂j(t) = (1− Lj1)π∗j (t)/(1− Lj1π
∗
j (t)). The constants cj are given by (15) (see Appendix).

Remark. In the proof of the previous proposition, we also provide a representation for J0 if

λ01 6= λ21.

The function J2 possesses a similar representation as J0. Therefore, as in the setting with two

states, we get that f0 and f2 are continuously differentiable. Furthermore, by the Feynman-Kac

representation of f1, we obtain that f1 ∈ C1,2. Hence the functions f0, f1, and f2 are classical

solutions of the corresponding HJBs.
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6 Conclusion

This paper studies the portfolio decision of an investor facing the threat of illiquidity. Illiquidity

is understood as a state in which the investor is not able to trade at all. Calibrating the illiquidity

part of the dynamics of the risky asset to the Japanese data of the aftermath of WW II, it is

shown that this threat has a significant effect on the investor’s portfolio decision and that the

efficiency loss is remarkable 22.7% of current wealth if the investment horizon is 30 years and

the investor has logarithmic utility. To obtain these results, we solve the corresponding control

problem explicitly, which means that we derive the solution to a system of coupled Hamilton-

Jacobi-Bellman equations. Our paper also contributes to the literature dealing with the equity

premium puzzle, since we introduce a model that is able to address the time dimension of an

economic crisis in which trading is not possible. We note, however, that our model is of partial

equilibrium type and thus our numerical results should be viewed as suggestive rather than

definitive. One possible direction for future research might be to study a general equilibrium

model with multiple agents.

15



References

Bank, P. and D. Baum (2004): Hedging and Portfolio Optimization in Financial Markets with a

Large Trader, Mathematical Finance 14, 118.

Barro, R. J. (2005): Rare disasters and asset markets in the twentieth century, Working Paper,

Havard University.

Cetin, U.; R. Jarrow and P. Protter (2004): Liquidity risk and arbitrage pricing theory, Finance

and Stochastics 8, 311341.

Davis, M. H. A. and A. R. Norman (1990): Portfolio selection with transaction costs, Mathematics

of Operations Research 15, 676-713.

Duffie, D. and T.-S. Sun (1990): Transactions Costs and Portfolio Choice in a Discrete-Continuous

Time Setting, Journal of Economic Dynamics and Control 14, 35-51.

Frey, B. S. and M. Kucher (1999): History as reflected in capital markets: The Case of World War

II, Working Paper, University of Zurich.

Jorion, P. and W. N. Goetzmann (1999): Global stock markets in the twentieth century, Journal

of Finance 54, 953-980.

Kahl, M.; J. Liu and F. A. Longstaff (2003): Paper millionaires: how valuable is stock to a stock-

holder who is restricted from selling it, Journal of Financial Economics 67, 385-410.

Korn, R. (1998): Portfolio Optimisation with Strictly Positive Transaction Costs and Impulse Con-

trol, Finance and Stochastics 2, 85-114.

Longstaff, F. A. (2001): Optimal Portfolio Choice and the Valuation of Illiquid Securities, Review

of Financial Studies 14, 407-431.

Longstaff, F. A. (2005): Asset pricing in markets with illiquid assets, Working Paper, UCLA.

Merton, R. C. (1969): Lifetime portfolio selection under uncertainty: the continuous case, Reviews

of Economical Statistics 51, 247-257.

Merton, R. C. (1971): Optimal consumption and portfolio rules in a continuous-time model, Jour-

nal of Economic Theory 3, 373-413.

Rietz, T. A. (1988): The equity premium: A solution, Journal of Monetary Economics 22, 117-131.

Schwartz, E. S. and C. Tebaldi (2006): Illiquid Assets and Optimal Portfolio Choice, Working Pa-

per, UCLA and NBER.

Siegel, J. J. (2002): Stocks for the long run, McGraw-Hill, New York.

16



A Appendix

Proof of Lemma 2.1. Set Y = 1/X. We have

dY = Y −[(−rZ − παZ + π2σ2
Z)dt− πσZdW +

∑

k 6=Z−

π−LZ−k

1−π−LZ−k
dNk].

Note that ∆S∆Y is given by

∆S∆Y = −S−Y − ∑

k 6=Z−

π−(LZ−k)2

1− π−LZ−k
dNk.

Thus, by the product rule d(SY ) = S−dY + Y −dS + d〈S, Y 〉c + ∆S∆Y, we obtain

d(SY ) = S−Y −[(αZ(1− π)− σ2
Zπ(1− π))dt + σZ(1− π)dW −

∑

k 6=Z−

(1−π−)LZ−k

1−π−LZ−k
dNk]

and the first result follows from dπ = ϕd(SY ). The second result follows by an application of

Itô’s lemma to Z = 1/π − 1. 2

Proof of Proposition 3.1. The first part follows from Fubini’s theorem applied to the

Feynman-Kac representation of f1 with f1(T, π) = ln(1 − lπ). As for the second part, note

that for 0 ≤ L10, L1 < 1 we have

|g′1(y)| ≤ |α1|+ σ2
1 + λ1

L1

1− L1
+ λ10

L10

1− L10

for all y ∈ [0, 1]. Acting on the tacit assumption that π ∈ [0, 1], by the remark following Lemma

2.1 we obtain
∣∣∣∣
∂π̃(π, s, ω)

∂π
g′1(π̃(π, s, ω))

∣∣∣∣ ≤
Z̃(s, ω)

(Z̃(s, ω) ∧ 1)2

(
|α1|+ σ2

1 + λ1
L1

1− L1
+ λ10

L10

1− L10

)
(8)

for all (s, ω) ∈ [t, T ]× Ω. Furthermore we have
∣∣∣∣
∂π̃(π, T, ω)

∂π

l

1− lπ̃(π, T, ω)

∣∣∣∣ ≤
Z̃(T, ω)

(Z̃(T, ω) ∧ 1)2
l

1− l
(9)

for all ω ∈ Ω. Therefore, the discounted left-hand sides of (8) and (9) are uniformly bounded in

π by integrable functions, and we can thus interchange differentiating and integrating. 2

Proof of Proposition 3.2. (i) and (ii). Let α1 ≤ 0, σ1 = 0, π ∈ [0, 1] and 0 ≤ L10, L1 < 1. We

have g′1(y) ≤ 0, for all y ∈ [0, 1] and ∂π̃(s)/∂π ≥ 0, for all s ∈ [t, T ]. Thus, by the monotonicity

of the integral and the remark after Lemma 2.1 we find f1
π ≤ 0. Since Z̃(s) = e−α1(s−t)

(1−L1)N̂(s)−N̂(t) ≥ 1,

we have
∂2π̃(s)
∂π2

= −2
Z̃(s)(1− Z̃(s))

(π + (1− π)Z̃(s))3
≥ 0.
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Further,

g′′1 (y) = −λ10
L2

10

(1− yL10)2
− λ1

L2
1

(1− yL1)2
≤ 0

and consequently

∂

∂π

{
∂π̃(s)
∂π

g′1(π̃(s))
}

=
∂2π̃(s)
∂π2

g′1(π̃(s)) +
(

∂π̃(s)
∂π

)2

g′′1 (π̃(s)) ≤ 0

∂

∂π

{
∂π̃(T )

∂π

l

1− lπ̃(T )

}
=

∂2π̃(T )
∂π2

l

1− lπ̃(T )
+

(
∂π̃(T )

∂π

)2
l2

(1− lπ̃(T ))2
≥ 0.

Since π̃ ∈ [0, 1], there exist constants ci ≥ 0, 1 ≤ i ≤ 4 such that
∣∣∣∣

∂

∂π

{
∂π̃(π, s, ω)

∂π
g′1(π̃(π, s, ω))

}∣∣∣∣ ≤ c1Z̃(s, ω)(Z̃(s, ω)− 1) + c2Z̃(s, ω)2 (10)

for all (s, ω) ∈ [t, T ]× Ω and
∣∣∣∣

∂

∂π

{
∂π̃(π, T, ω)

∂π

l

1− lπ̃(π, T, ω)

}∣∣∣∣ ≤ c3Z̃(T, ω)(Z̃(T, ω)− 1) + c4Z̃(T, ω)2 (11)

for all ω ∈ Ω. Thus, the discounted left-hand sides of (10) and (11) are uniformly bounded

in π by integrable functions, and as in the proof of Proposition 3.1, we can thus interchange

differentiating and integrating. This yields

∂2f1(t, π)
∂π2

=
∫ T

t

Et,π
1

[∂2π̃(s)
∂π2

g′1(π̃(s)) +
(

∂π̃(s)
∂π

)2

g′′1 (π̃(s))
]
e−λ10(s−t)ds

−Et,π
1

[∂2π̃(T )
∂π2

l

1− lπ̃(T )
+

(
∂π̃(T )

∂π

)2
l2

(1− lπ̃(T ))2
]
e−λ10(T−t) ≤ 0.

Taking the derivative with respect to π of the right hand side of the FOC we get

0 ≥ −σ2
0 − λ01

L2
01

(1− π∗L01)2
− λ0

L2
0

(1− π∗L0)2
+ λ01f

1
ππ

(
t,

(1− L01)π∗

1− L01π∗

)
(1− L01)2

(1− L01π∗)4

+2λ01f
1
π

(
t,

(1− L01)π∗

1− L01π∗

)
L01(1− L01)
(1− L01π∗)3

.

Thus, the solution of the FOC is unique and satisfies the second-order condition. Furthermore,

by the implicit function theorem, we conclude that given the existence of the mapping π∗ :

[0, T ] → [0, 1], t 7→ π∗(t) where π∗(t) solves the FOC (5), the mapping π∗ is continuously

differentiable and maximizes the HJB (4).

(iii) Under our assumptions, the right hand side of the FOC (5) is continuous and decreasing in

π. Therefore, by the intermediate value theorem, the claim follows. 2

Proof of Proposition 3.3. Recall, that the HJB equation for state 0 is given by

0 = f0
t (t) + g0(π∗(t)) + λ01f

1(t, π̂0(t))− λ01f
0(t),
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where g0(π∗) = r0 + α0π
∗ − 1

2π∗2σ2
0 + λ0 ln(1− π∗L0) + λ01 ln(1− π∗L01). By Proposition 3.1,

we have

f1(t, π̂0(t)) = λ10

∫ T

t

f0(s)e−λ10(s−t)ds +
∫ T

t

Et,π̂0(t)
1 [g1(π̃(s))]e−λ10(s−t)ds

+Et,π̂0(t)
1 [ln(1− lπ̃(T ))]e−λ10(T−t),

which yields the following integro-differential equation for f0

0 = f0
t (t)e−λ10t + g0(π∗(t))e−λ10t + λ01λ10

∫ T

t

f0(s)e−λ10sds− λ01f
0(t)e−λ10t

+λ01

∫ T

t

Et,π̂0(t)
1 [g1(π̃(s))]e−λ10sds + λ01E

t,π̂0(t)
1 [ln(1− lπ̃(T ))]e−λ10T .

Substituting

H(t) =
∫ T

t

f0(s)e−λ10sds

into the equation above, we get

0 = −H ′′(t)− (λ10 − λ01)H ′(t) + λ01λ10H(t) + g0(π∗(t))e−λ10t

+λ01

∫ T

t

Et,π̂0(t)
1 [g1(π̃(s))]e−λ10sds + λ01E

t,π̂0(t)
1 [ln(1− lπ̃(T ))]e−λ10T .

Eventually, setting

F (t) = g0(π∗(t))e−λ10t + λ01

∫ T

t

Et,π̂0(t)
1 [g1(π̃(s))]e−λ10sds

+λ01E
t,π̂0(t)
1 [ln(1− lπ̃(T ))]e−λ10T

leads to the following second order linear inhomogenous differential equation

H ′′(t) + (λ10 − λ01)H ′(t)− λ01λ10H(t) = F (t) (12)

with the constraints

H(T ) = 0, H ′(T ) = 0.

The characteristic equation

µ2 + (λ10 − λ01)µ− λ01λ10 = 0

has the two roots,

µ1 = λ01, µ2 = −λ10.

Thus, the exponential ansatz yields the following fundamental system for the homogenous dif-

ferential equation

u1(t) = eλ01t, u2(t) = e−λ10t.
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By means of the method of variation of constants, a particular solution of the differential equation

(12) is given by

w(t) = u1(t)
∫ T

t

F (s)u2(s)
W (s)

ds− u2(t)
∫ T

t

F (s)u1(s)
W (s)

ds,

where the Wronskian determinant W is given by

W (s) = −(λ01 + λ10)e(λ01−λ10)s.

Note that we have w(T ) = 0 and w′(T ) = 0. Thus, the unique solution of the constraint

differential equation (12) is given by the particular solution w, i.e

H(t) =
∫ T

t

F (s)
λ01 + λ10

eλ10(s−t)ds−
∫ T

t

F (s)
λ01 + λ10

e−λ01(s−t)ds.

Differentiating H we obtain

H ′(t) = u′1(t)
∫ T

t

F (s)u2(s)
W (s)

ds− u′2(t)
∫ T

t

F (s)u1(s)
W (s)

ds

= −λ01

∫ T

t

F (s)
λ01 + λ10

e−λ01(s−t)ds− λ10

∫ T

t

F (s)
λ01 + λ10

eλ10(s−t)ds

Further, by definition of H we have

H ′(t) = −f0(t)e−λ10t

and thus, f0 is given by

f0(t) = λ01e
λ10t

∫ T

t

F (s)
λ01 + λ10

e−λ01(s−t)ds + λ10

∫ T

t

F (s)
λ01 + λ10

eλ10sds.

2

Proof of Proposition 3.4. By Proposition 3.2 (ii), the function F is continuous. Thus

f0(·) =
λ01

λ01 + λ10
e(λ01+λ10)·

∫ T

·
F (s)e−λ01sds +

λ10

λ01 + λ10

∫ T

·
F (s)eλ10sds

is continuously differentiable. As we have already seen in the proof of Proposition 3.1 and

Proposition 3.2, the function f1 is twice continuously differentiable with respect to π. Further,

the Feynman-Kac representation

f1(t, π) =
∞∑

n=0

∫ T

t

e−λ10(s−t)pn(t, s)(λ10f
0(s) +

∫ ∞

−∞
g1(π̃n(t, s, ω))ψs−t(ω)dω)ds

e−λ10(T−t)
∞∑

n=0

pn(t, T )
∫ ∞

−∞
ln(1− lπ̃n(t, T, ω))ψT−t(ω)dω

implies that f1 is continuously differentiable with respect to t. 2
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Proof of Proposition 3.5. Under the assumption of Jj(t, x) = ln(x) + f j(t), we get the

following Hamilton-Jacobi-Bellman equations for j, k ∈ {0, 1} with j 6= k.

0 = max
πj

{
f j

t + rj + αjπj − 0.5π2
j σ2

j (13)

+λjk

[
ln(1− πjLjk) + fk − f j

]
+ λj ln(1− πjLj)

}
.

with terminal conditions Jj(T, x) = U(x). This leads to the following first order conditions for

the investor’s optimal portfolio π∗j

0 = αj − π∗j σ2
j − λj

Lj

1− π∗j Lj
− λjk

Ljk

1− π∗j Ljk
.

Furthermore, we have

f j(t) =
gj(π∗j )
λjk

(1− e−λjk(T−t)) + λjk

∫ T

t

fk(s)e−λjk(s−t)ds,

where

gj(y) = rj + αjy − 0.5y2σ2
j + λj ln(1− yLj) + λjk ln(1− yLjk).

Substituting the above representation of f1 into the HJB (13) for state 0, and setting

H(t) =
∫ T

t

f0(s)e−λ10sds

we obtain the following second order ordinary differential equation

H ′′(t) + (λ10 − λ01)H ′(t)− λ01λ10H(t) = g0(π∗0)e−λ10t +
λ01

λ10
g1(π∗1)(e−λ10t − e−λ10T ).

2

Proof of Proposition 5.1. analogously to the proof of Proposition 3.1. 2

Proof of Proposition 5.2. By Proposition 5.1 and the HJB equations for f0 and f2, we

obtain the following integro-differential equations

0 = f j
t (t)e−λ1·t +λj1

∫ T

t

(λ1jf
j(s)+λ1kfk(s))e−λ1·sds+λjkfk(t)e−λ1·t−λj·f j(t)e−λ1·t +Fj(t),

j, k ∈ {0, 2} with j 6= k, where

Fj(t) = gi(π∗j (t))e−λ1·t + λj1

∫ T

t

Et,π̂j(t)
1 [g1(π̃(s))]e−λ1·sds + λj1E

t,π̂j(t)
1 [ln(1− lπ̃(T ))]e−λ1·T

and π̂j(t) = (1 − Lj1)π∗j (t)/(1 − Lj1π
∗
j (t)). Substituting Hi(t) =

∫ T

t
f i(s)e−λ1·sds into these

equations, we obtain a linear inhomogeneous system of two second order constant-coefficient

differential equations

H ′′
0 (t) + (λ1· − λ0·)H ′

0(t)− λ01λ10H0(t)− λ01λ12H2(t) + λ02H
′
2(t) = F0(t) (14)

H ′′
2 (t) + (λ1· − λ2·)H ′

2(t)− λ21λ12H2(t)− λ21λ10H0(t) + λ20H
′
0(t) = F2(t)
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with terminal conditions H0(T ) = 0, H ′
0(T ) = 0, H2(T ) = 0, H ′

2(T ) = 0. By definition of H0,

the investor’s indirect utility in state 0 is given by

J0(t, x) = ln(x)−H ′
0(t)e

λ1·t.

Setting ∆jk = λj·−λk· and substituting (u0, u1) = (H0,H
′
0) and (v0, v1) = (H2,H

′
2), the system

(14) can be transformed into the following system of first-order ODEs.

u′0 = u1,

u′1 = λ01λ10u0 −∆10u1 + λ01λ12v0 − λ02v1 + F0,

v′0 = v1,

v′1 = λ21λ10u0 − λ20u1 + λ21λ12v0 −∆12v1 + F2.

The characteristic polynomial of the corresponding homogenous system reads

ph(µ) = µ(µ + λ1·)(µ2 + pµ + q),

where

p = λ1· − λ0· − λ2· q = λ01(λ2· − λ10) + λ21(λ02 − λ12).

Thus, the eigenvalues are explicitly given by µ1 = 0, µ2 = −λ1· and µ3,4 = −p/2±
√

(p2/4− q).

Note that in case of λ01 = λ21, we have

µ3 = λ21 µ4 = λ0· − λ1· + λ20.

By the variation of constants method and Cramer’s rule, the solution of the above system under

the constraint (u0, u1, v0, v1)t(T ) = 0 is given by

(u, v)t(t) =
4∑

j=1

yj(t)
∫ T

t

−Dj(s)
det(ykl)(s)

ds,

where yj , j = 1, ..., 4 is a fundamental system of the corresponding homogenous system and

Dj denotes the determinant of the matrix (y1, y2, y3, y4) where the jth column is replaced by

(0, F0, 0, F2)t. Note that in case of four pairwise different real eigenvalues, the exponential ansatz

yields that a fundamental system is given by yj = vje
µj ·, where vj denotes the eigenvector

corresponding to µj . Eventually, for λ01 = λ21 we get

H ′
0(t) = −c1

∫ T

t

e(λ02+λ2·−λ1·)(t−s)(F0(s)− F2(s))ds

−c2

∫ T

t

eλ21(t−s)((λ10 − λ20)F0(s) + (λ12 − λ02)F2(s))ds

−c3

∫ T

t

e−λ1·(t−s)((λ12λ20 + λ10λ2·)F0(s) + (λ02λ1· + λ12λ21)F2(s))ds,
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where

c1 =
(λ2

02 − λ12λ21 + λ02(λ2· − λ1·))(λ02λ20 − λ10λ2· + λ20(λ2· − λ12))
(λ02 − λ1· + λ20)(λ02 + λ2·)(λ02λ20 − λ10λ2· + λ20(λ2· − λ12))

(15)

c2 =
λ21

(λ1· − λ02 − λ20)(λ1· + λ21)

c3 =
1

(λ1· + λ21)(λ02 + λ2·)
.

2
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0 1

Figure 1: The figure depicts an economy with two regimes, where trading is possible in state 0

and impossible in state 1.

FOC(π)*100

π

∂
π
f1(0,π)

0

−10

4

10.5

Figure 2: The figure depicts the function f1
π(0, ·), as well as the right-hand side of the FOC (5)

as a function of π, where the parameters are chosen according to the sixth line of table 2. To get

a more pronounced slope, the latter curve is multiplied by 100. Note that this does not change

the null of the function.
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Figure 3: The figure depicts the situation of example two.

0
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Figure 4: The figure depicts an economy with three regimes where trading is possible in states

0 and 2 and impossible in state 1.
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λ01 L01 λ10 L10 l T π∗0,illiq(%) π∗0,liq (%) ∆x (%) variable value

0.01 0 0.3 0.5 0.5 10 66.34 80.00 4.72 r0 0.03

30 66.26 80.00 13.64 r1 0.03

50 66.26 80.00 21.74 α0 0.05

0.01 0 0.3 0.5 0 50 66.26 80.00 20.68 α1 -r1

0.01 0 0.3 0.9 0.9 10 52.29 80.00 8.27 σ0 0.25

30 52.28 80.00 22.71 σ1 0

50 52.28 80.00 34.88 λ0 0

0.01 0 1 0.5 0.5 50 67.39 80.00 21.43 λ1 0

0.02 0 0.3 0.5 0.5 10 55.09 80.00 8.14 L0 0

30 54.98 80.00 22.55 L1 0

50 54.98 80.00 34.70 t 0

0.02 0 0.3 0.9 0.9 10 36.49 80.00 12.49 X(0) 100

30 36.47 80.00 32.67

50 36.47 80.00 48.19

0.3 0.5 0.01 0 0 50 0 0 0

0.01 0.5 0.3 0 0 50 66.26 67.89 2.16

0.01 0.9 0.3 0 0 50 52.28 52.64 0.41

Table 2: There are two possible states for the economy. The investor maximizes expected

indirect logarithmic utility from terminal wealth. The investment horizon is given by T . The

market consists of a bond with interest rate r = 0.03 and a stock which is modeled as a diffusion

with state dependant volatility σi and excess return αi. The intensities for a regime shift from

state i to state j are denoted by λij . Upon transition from state i to state j, a loss of Lij is

involved. If at time t = T the exchange is closed, then the investor can liquidate his shares

of the stock only by suffering a loss of rate l. π∗0,illiq and π∗0,liq denote the optimal portfolio

of the investor when trading is not allowed in state 1, respectively when trading is allowed in

both states. We do not allow for short selling. ∆x denotes by which amount the initial capital

of X(0) = 100 of an investor who is not allowed to trade in state 1 can be reduced to get the

same utility as in the case that trading is allowed in both states. The parameters are chosen to

mimic situations such as in Japan after WW II. For instance, the parametrization λ01 = 0.01,

λ10 = 0.3, L01 = 0, and L10 = 0.9 implies that, on average, once in a century the illiquidity state

is reached and, on average, this state is left after 3.33 years triggering a stock price decrease of

90%. In this particular case, for an an investment horizon of T = 30 years, the change of initial

capital amounts to over 22%.
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λ01 λ10 T π∗0,illiq(%) ∆x (%) variable value

1 0 10 85.83 0.30 l 0

30 87.88 2.19 r0 0.03

50 89.52 4.87 r1 0.03

1 0.01 30 87.69 2.02 α0 0.05

50 89.05 4.36 α1 0.05

1 0.1 30 86.28 1.14 σ0 0.25

50 86.42 2.13 σ1 0

0.1 0 30 86.25 1.46 λ0 0

50 88.06 3.86 λ1 0.0197

0.1 0.01 30 85.92 1.31 L0 0

50 87.39 3.33 L1 0.8

0.1 0.1 50 83.86 1.22 L01 0

0.02 0.2 50 80.76 0.19 L10 0

0.01 0 50 82.81 1.04 t 0

0.01 0.01 50 82.31 0.86 X(0) 100

Table 3: There are two possible states for the economy. The investor maximizes expected

indirect logarithmic utility from terminal wealth. The investment horizon is given by T . The

market consists of a bond with interest rate r = 0.03 and a stock which is modeled as a jump-

diffusion with state dependant volatility σi, excess return αi, relative jump size Li and jump

intensity λi. The intensities for a regime shift from state i to state j are denoted by λij . If at

time t = T the exchange is closed, then the investor can liquidate his shares without any loss.

π∗0,illiq denotes the optimal portfolio of the investor when trading is not allowed in state 1. The

optimal portfolio of an investor who is allowed to trade in both states is given by π∗0,liq = 0.8.

His optimal portfolio when starting in state 1 is given by π∗1,liq = 0.855. We do not allow for

short selling. ∆x denotes by which amount the initial capital of X(0) = 100 of an investor who

is not allowed to trade in state 1, can be reduced to get the same utility as in the case that

trading is allowed in both states. The parameters are chosen such that, in case of trading is

allowed in both states, the model is equivalent to a (single-state) Merton model with parameters

σM = 0.25, αM = 0.05 and rM = 0.03.
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λ01 λ10 l T π∗0,illiq(%) ∆x (%) variable value

1 0.01 0.5 10 0 18.13 r0 0.03

30 57.17 37.32 r1 0.03

50 74.47 41.27 α0 0.05

1 0.1 0.5 10 20.04 18.02 α1 0.05

30 82.77 23.17 σ0 0.25

50 86.03 23.98 σ1 0

0.1 0.01 0.5 10 30.44 17.32 λ0 0

30 65.39 33.69 λ1 0.0197

50 75.90 38.86 L0 0

0.1 0.1 0.5 10 59.79 14.02 L1 0.8

30 81.60 18.65 L01 0

50 83.61 19.28 L10 0

0.01 0.01 0.5 10 72.00 4.28 t 0

30 76.39 11.03 X(0) 100

50 78.80 15.93

0.01 0.01 1 10 50.76 9.40

30 54.77 25.79

50 58.52 38.74

0.01 0.1 0.5 10 76.76 2.93

30 80.31 4.40

50 80.68 4.67

0.01 0.1 1 10 64.21 6.92

30 77.36 11.31

50 80.21 12.08

Table 4: The situation is the same as in Table 3. However, if at time t = T the exchange is

closed, then the investor can liquidate his shares of the stock only by suffering a loss at the rate

l. As before, we do not allow for short selling.
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