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Abstract

We consider optimal consumption and (strategic) asset allocation of an investor

with uncertain lifetime. The problem is solved using a multi-stage stochastic linear

programming (SLP) model to be able to generalize the closed-form solution obtained

by Richard (1975). We account for aspects of the application of the SLP approach

which arise in the context of life-cycle asset allocation, but are also relevant for other

problems of similar structure. The objective is to maximize the expected utility of

consumption over the lifetime and of bequest at the time of death of the investor.

Since we maximize utility (rather than other objectives which can be implemented

more easily) we provide a new approach to optimize the breakpoints required for the

linearization of the utility function. The uncertainty of the problem is described by

discrete scenario trees. The model solves for the rebalancing decisions in the first few

years of the investor’s lifetime, accounting for anticipated cash flows in the near future,

and applies Richard’s closed-form solution for the long, subsequent steady-state period.

In our numerical examples we first show that available closed-form solutions can be

accurately replicated with the SLP-based approach. Second, we add elements to the

problem specification which are usually beyond the scope of closed-form solutions. We

find that the SLP approach is well suited to account for these extensions of the classical

Merton setting.

JEL classification codes: C61, G11



1 Introduction

One of the classical problems in finance is the optimal consumption and asset allocation

over the life-cycle of a finitely-lived investor. This problem lies at the heart of the

subfield of personal finance, and financial advisors as well as portfolio and pension fund

managers throughout the world are faced with it every day. The interest and activities

in this research area have grown in recent years, partly spurred by growing world-

wide concern about the stability of public pension systems and the resulting trend

towards private pensions. Classical treatments of this problem are Samuelson (1969)

and Merton (1969, 1971) who formulate models in settings which allow for closed-form

solutions. Since then various models in more general settings (e.g. accounting for labor

income or time-varying investment opportunities) have been proposed, many of which

require to use numerical solution techniques.

We use multi-period stochastic linear programming (SLP) to solve the problem of

optimal life-cycle asset allocation and consumption. The method has been explicitly

chosen with the practical application of our approach in mind. This distinguishes our

work from literature which focuses more on gaining general insights into the depen-

dencies between investment/consumption decisions and state variables but excludes a

number of (possibly important) real-world aspects on purpose to preserve analytical

tractability. For example, many models are confined to a small number of risky assets

(often only one), do not allow for constraints on the asset allocation, ignore trans-

actions costs, or cannot take exogenous cash flows into account. In contrast, many

of these features which are considered important for investment decisions in practice

can be easily incorporated when using SLP. Combined with the availability of efficient

solvers, this explains why the SLP approach has been successfully applied to a wide

range of problems (see e.g. Ziemba and Mulvey 1998, Wallace and Ziemba 2005), in

particular in the context of asset-liability management (see e.g. Cariño et al. 1998,

Dempster et al. 2003, Zenios and Ziemba 2006, Geyer and Ziemba 2007), or contingent
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claims analysis (see King 2002).

Key elements of our model are: The expected utility of consumption over the

investor’s lifetime and expected utility of bequest is maximized, and mortality risk

is accounted for. Consumption and investment decisions are optimized jointly, and

personal characteristics of the investor can be taken into account (e.g. risk attitude,

retirement, future cash flows for major purchases or associated with other life events).

In addition to including those aspects another objective is to solve certain (technical)

problems which are typically encountered in the formulation and implementation of

SLPs for life-cycle asset allocation and consumption problems (e.g. the long planning

horizon is in conflict with a manageable problem size).

The present paper is – as far as we know – the first application of stochastic linear

programming in a life-cycle asset allocation context. We maximize expected utility

rather than other objectives which can be implemented more easily (e.g. piecewise

linear or quadratic penalty functions, or minimizing CVaR). As far as we know no

other papers in this area use utility functions in this way and for that purpose. The

accuracy of the solution depends strongly on the way the utility function is linearized.

Linearizing such functions can be rather difficult, in particular for high degrees of

risk aversion. Therefore it is essential to optimize the breakpoints required for their

linearization. We propose and implement a new approach for that purpose and show

that closed-form solutions can be replicated with very high precision.

The long time intervals involved in life-cycle asset allocation problems pose a noto-

riously difficult problem. To keep the dimension of the problem manageable SLP-based

approaches typically rebalance the portfolio very infrequently and define consumption

plans for rather long time intervals. We provide two contributions to this aspect. First,

we incorporate a closed-form solution for optimal subperiod consumption during (long)

time intervals in the objective. Second, the model formulation combines decisions for

a few short time periods in the near future with a closed-form solution for the long,

subsequent steady-state period. Both closed-form solutions are integrated into the SLP
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formulation and take survival probabilities into account.

The SLP approach extends the range of available numerical methods for solving

life-cycle problems.1 One type of numerical methods works via grid methods discretiz-

ing the state space (see e.g. Brennan et al. 1997, Barberis 2000, Cocco et al. 2005,

Gomes and Michaelides 2005). Another type derives a system of equations which is

solved numerically (see Schroder and Skiadas 1999). Detemple et al. (2003) propose

a simulation-based method to approximate deviations from a closed-form solution.

Brandt et al. (2005) combine Monte Carlo simulation and regression techniques, and

are inspired by the option pricing algorithm of Longstaff and Schwartz (2001). The lin-

ear nature of the SLP approach bears some similarities to Campbell et al. (2003) who

linearize key problem elements (e.g. the budget constraint, and the Euler equation).

The analysis of return predictability and its impact on asset allocation decisions has

found considerable attention in the literature (see e.g. Barberis 2000, Campbell et al.

2003, Brandt et al. 2005). For that purpose, a number of aspects (e.g. mortality risk,

constraints on asset weights, transaction costs, labor income or other cash flows) may

have to be excluded from the analysis. However, in this paper we rather want to focus

on those practically relevant aspects. Therefore we maintain the i.i.d. assumption and

extend the Merton-Samuelson-Richard setting along these lines.

The paper is organized as follows: Section 2 describes the stochastic programming

model, in particular the formulation of the objective, the optimization approach for its

linearization, and the generation of scenarios. In Section 3 results from the SLP are

compared to cases where closed-form solutions are available, and results from life-cycle

consumption and asset allocation decisions in a more realistic setting are presented.

Section 4 concludes.
1A more comprehensive comparison with other numerical methods is very demanding and not the objec-

tive of this paper.
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2 Model description

We consider the consumption and investment decisions of an investor with uncertain

lifetime. We start by formulating a generic stochastic linear program to introduce the

basic idea of this approach. Subsequently, we introduce our notation and define key

variables, formulate the constraints and the objective function. Thereafter, we describe

the choice of breakpoints and the scenario generation.

2.1 Stochastic linear programming

A two-stage stochastic linear program (SLP) with recourse has the following structure:

The problem consists of a first-stage decision x0 with uncertain consequences ω1 (e.g.

the uncertain returns associated with an investment). The decisions taken in the second

stage x1(x0, ω1) can be viewed as revisions of the first-stage decisions given realized

outcomes of ω1. The objective is to maximize the utility (or another valuation function)

associated with x0 and the expected utility of x1(x0, ω1) subject to linear constraints

relevant in t=0 and t=1.

f0(x0) + E[f1(x1(x0, ω1))] −→ max

s.t. A0x0 ≤ b0 A1x1(x0, ω1) ≤ b1.

The probability distribution of the random variable ω1 is described in terms of a discrete

number of outcomes (so-called scenarios). This implies that x1 represents decisions

for each possible scenario. It further implies that the expectation in the objective

is evaluated in terms of a sum across outcomes. Accordingly, the constraints in the

second stage must hold for each scenario. An important assumption is that randomness

is exogenous and is not affected by decisions.

In our application we consider non-linear objective functions. To be able to use

linear programming solvers those functions need to be linearized. For that purpose
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a function f(x) is approximated by m linear segments between the breakpoints bj

(j=0,. . . ,m). The choice of bj is explained in detail in Section 2.5. The argument x is

defined in terms of non-negative decision variables vj associated with each segment:

x =
m+1∑

j=0

vj

0 ≤ v0 ≤ b0 vm+1 ≥ 0

0 ≤ vj ≤ bj − bj−1 j = 1, . . . , m.

The slopes of the linear segments are given by

∆j =
f(bj)− f(bj−1)

bj − bj−1

and f(x) is approximated by

f(x) ≈ ∆1v0 +
m∑

j=1

∆jvj + ∆mvm+1.

The two-stage formulation of an SLP can be extended to T stages. In general, the

probability distribution associated with ωt depends on the outcomes of the random

variable ωt−1. This can be described by a scenario tree (see Figure 1) which is defined

by the number of stages and the number of arcs leaving nodes at a particular stage (the

branching factor nt). The tree always starts with a single node which corresponds to

the present stage (t=0). Each outcome in t−1 is the root of the corresponding sub-tree

consisting of nt outcomes in t.

Decisions are made at each node of the tree. Non-anticipatory constraints are

imposed to guarantee that a decision made at a specific node is identical for all scenarios

leaving that node. A single scenario st is a trajectory that corresponds to a unique

path leading from the single node at t=0 to a single node at t. Two scenarios s′t and
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Figure 1: Scenario tree with node structure 2×2×3
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s′′t are identical until t and differ in subsequent stages t+1,. . . ,T . Thus, decisions in t

depend on the history of the random variable (ω1, . . . , ωt), and the decisions taken in

all previous stages, which is denoted by x̃t. In general, a multi-stage stochastic linear

program can be formulated as

f0(x0) +
T∑

t=1

E[ft(x̃t)] −→ max

s.t. Atx̃t ≤ bt t = 0, . . . , T.

Given the discrete representation of the random variables and the associated struc-

ture of the scenario tree, variables and constraints for each stage and each node of

the tree are defined. This typically leads to a large-scale linear program. Since all

uncertainty has been converted into corresponding model elements, this representation

is called the deterministic equivalent of the SLP. As most of the coefficients in the as-

sociated constraint matrices At are zero, and the non-zero coefficients follow a special

structure, various algorithms to exploit these facts have been proposed (see Birge and

Louveaux 1997). Publicly available software to solve large stochastic programming

problems is detailed in Wallace and Ziemba (2005). We use routines from the open
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source project COIN-OR (see http://www.coin-or.org). The problem is formulated

using the Stochastic Mathematical Programming System (SMPS) input format for

multi-stage stochastic programs (see Gassmann and Schweitzer 2001, King et al. 2005)

in terms of three input files: the core-, stoch- and time-files. The core-file contains

information about the decisions variables, constraints, right-hand-sides and bounds. It

contains all fixed coefficients and dummy entries for random elements. The stoch-file

reflects the node structure of the scenario tree and contains all random outcomes (i.e.

asset returns). The time-file assigns decision variables and constraints to stages. The

solution of a typical problem we consider in Section 3 with four stages, three assets, 216

scenarios and 40 breakpoints requires a few seconds using a Pentium 4/640 processor

with 3.2 GHz and 1 GB RAM.

2.2 Variables

We now introduce our notation and key variables. N is the number of assets the

investor can choose from. t denotes stages (points in time) and runs from t=0 (now)

to t=T . T is the number of time intervals. τt is the number of years between stage t

and stage t+1 and the total number of years covered (the planning horizon) is given

by τ=τ0+· · ·+τT−1. Given the current age of the investor we define the planning

horizon such that his maximum age is 101 years (the mortality tables we use assign

a conditional probability of 100% that a person dies between age 100 and 101). The

choice of the length of the time intervals τt is described in Section 2.6.

The following (decision) variables are used in the model formulation:

C0≥0, C̃t≥0 (t=1,. . . ,T−1) . . . consumption in t; e.g. C̃2 is the amount set aside in

t=2 for consumption between t=2 and t=3.

R̃i
t (t=1,. . . ,T ; i=1,. . . ,N) . . . gross return of asset i for the period that ends in t.

P i
0≥0, P̃ i

t≥0 (t=1,. . . ,T−1; i=1,. . . ,N) . . . amount of asset i purchased in t.

Si
0≥0, S̃i

t≥0 (t=1,. . . ,T−1; i=1,. . . ,N) . . . amount of asset i sold in t.
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qi
p and qi

s . . . transaction costs for purchases and sales of asset i.

W i
0, W̃ i

t (t=1,. . . ,T−1; i=1,. . . ,N) . . . total amount invested in asset i in t; e.g. W̃ i
2 is

the amount invested in asset i in t=2; in t=3 the value of this investment will be

W̃ i
2R̃

i
3.

wi
0 . . . initial value of asset i (before transactions).

B̃t≥0 (t=1,. . . ,T ) . . . bequest in t given by B̃t=
∑

R̃i
tW̃

i
t−1.

τt (t=0,. . . ,T−1) . . . the number of years between stage t and stage t+1.

ϕy . . . the (conditional) probability to survive the year following year y.

Φ(yt, τt) . . . the probability to survive the period of length τt starting at stage t at an

age of yt years; Φ(yt, τt)=
∏yt+τt−1

k=yt
ϕk.

Λt (t=1,. . . ,T−1) . . . the probability to be alive at stage t (at an age of yt); Λt=
∏t−1

k=0 Φ(yk, τk).

Θt (t=1,. . . ,T ) . . . the probability to die between stage t−1 and t; Θt=Λt−1[1−Φ(yt, τt)].

Lt (t=0,. . . ,T−1). . . labor income in t; e.g. L2 is the present value of labor income

received between t=2 and t=3.

Ft (t=0,. . . ,T−1). . . fixed cash flow paid or received in t; e.g. F2 is the present value

of cash flows paid or received between t=2 and t=3.

r . . . the risk-free interest rate.

δ . . . the investor’s time preference rate, d=exp{−δ} is the time discount factor, and

Dt is the time discount factor applicable at stage t:

Dt = exp

{
−δ

t−1∑

i=0

τi

}
.

The stochastic returns R̃i
t describe the uncertainty faced by the investor. The

procedure to simulate their values and to construct the scenario tree is described in

Section 2.6. C0, C̃t, W i
0, P̃ i

t , S̃i
t , W̃ i

t and B̃t are the decision variables of the problem and

their values are obtained from the optimal solution of the stochastic linear program.
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Labor income is computed on the basis of initial labor income L0, the annual labor

growth rate `, the number of years until retirement yr, and the fraction of income

during retirement fr. The annual stream of income before retirement is given by (the

index y denotes years) Ly=L0 exp{y`} (y=1, . . . , yr) and by Ly=frLyr exp{(y−yr)`r}
(y=yr+1, . . . , τ) after retirement, where `r is the growth rate of labor income after

retirement. The present value of labor income used in the budget constraints (see

below) is defined as

Lt =
kt∑

y=jt

Ly[(1− Φ(yt, y − 1)(1− ϕy)) exp{−r(y − jt + 1)}], (1)

where

jt = 1 +
t−1∑

i=0

τi kt = jt + τt − 1.

Φ(yt, y−1) is the probability to survive until the beginning of year y given age yt at

stage t, and (1−ϕy) is the probability to die in the subsequent year. Labor income Ly

is thus reduced by an amount that corresponds to the premium of a fairly priced life

insurance (see Richard 1975).

2.3 Constraints

The budget equations are given by

C0 +
N∑

i=1

P i
0(1 + qi

p) =
N∑

i=1

Si
0(1− qi

s) + L0 + F0

C̃t +
N∑

i=1

P̃ i
t (1 + qi

p) =
N∑

i=1

S̃i
t(1− qi

s) + Lt + Ft t=1,. . . ,T−1.
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The value of investments accumulates according to the following equations:

W i
0 = wi

0 + P i
0 − Si

0 i=1,. . . ,N

W̃ i
t = R̃i

tW̃
i
t−1 + P̃ i

t − S̃i
t t=1,. . . ,T−1, i=1,. . . ,N

W̃ i
T = R̃i

T W̃ i
T−1 i=1,. . . ,N.

To model restrictions on the portfolio composition we use the constraints

li ≤ W̃ i
t∑N

i=1 W̃ i
t

≤ ui t=0,. . . ,T−1,

where ui is the maximum and li the minimum weight of asset i in the portfolio. Short

sales can be excluded by li=0 or limited by setting li equal to minus the maximum

leverage of asset i. In general the decision variables W̃ i
t can become negative. However,

total wealth must be positive in all periods:

N∑

i=1

W̃ i
t ≥ 0 t=0,. . . ,T .

2.4 Objective

The objective is to maximize the expected utility of consumption over the lifetime and

of bequest at the time of death of the investor:

U(C0) + E

[
T∑

t=1

ΘtU(B̃t)Dt +
T−1∑

t=1

ΛtU(C̃t)Dt

]
−→ max .

U is a power utility function with constant relative risk aversion γ. Θt is the probability

to die between stage t−1 and t, and Λt is the probability to be alive in t.

C0 and C̃t refer to consumption during the subsequent time interval of length τt

which may be longer than one year. We assume that the amount C̃t is not consumed

at once but in annual parts. Accordingly, the utility of consuming those parts differs
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from the utility of consuming C̃t at once. As a simple approximation the utility of

consumption over a period of length τt can be defined as τtU(C̃t/τt). This can be

improved by replacing 1/τt with an annuity factor. However, we prefer to use a more

refined approach which is based on considering the following optimization problem. We

derive our solution by considering stage 0 and three subperiods (years) (i.e. τ0=3) and

generalize later. Assume for the time being that C0 is known. We define the optimal

annual consumption levels in the three subperiods c0, c1 and c2 such that the utility

of consumption in the period is maximized

U(c0) + Φ1 exp{−δ}U(c1) + Φ2 exp{−2δ}U(c2) −→ max

subject to the constraint c0+exp{−r}c1+exp{−2r}c2=C0. To simplify notation in

this derivation Φj=Φ(y0, j) is the conditional probability to survive the next j years

(i.e. to be alive at the beginning of subperiod j+1), given a current age of y0. The

constraint assumes that c1 and c2 are invested at the risk-free rate. For power utility

U(c)=c1−γ/(1−γ) we have

L =
c1−γ
0

1− γ
+ Φ1 exp{−δ} c1−γ

1

1− γ
+ Φ2 exp{−2δ} c1−γ

2

1− γ
+

+λ (C0 − c0 − exp{−r}c1 − exp{−2r}c2) −→ max

which leads to

c1 = c0 exp
{

r − δ

γ

}
Φ1/γ

1 c2 = c0 exp
{

2
r − δ

γ

}
Φ1/γ

2 .

Generalizing for τt subperiods we obtain (if γ 6=0 and cj>0 ∀j)

C0 = c0

τt−1∑

j=0

Φj
1/γ exp

{
j(r(1− γ)− δ)

γ

}
(Φ0 = 1).

Based on this result we can reformulate the model such that optimal consumption

12



in the subperiods is taken into account. This is accomplished without increasing the

number of decision variables. We replace the original decision variables C0 and C̃t

(which refer to consumption in an entire period) by the annual consumption variables

c0 and c̃t. We define

αtj = exp
{

r − δ

γ

}
Φ(yt, j)1/γ

and

αt =
τt−1∑

j=0

Φ(yt, j)
1/γ exp

{
j(r(1− γ)− δ)

γ

}
=

τt−1∑

j=0

αtj exp{−jr}.

The budget constraints are now formulated as

α0c0 +
N∑

i=1

P i
0(1 + qi

p) =
N∑

i=1

Si
0(1− qi

s) + L0 + F0

αtc̃t +
N∑

i=1

P̃ i
t (1 + qi

p) =
N∑

i=1

S̃i
t(1− qi

s) + Lt + Ft t=1,. . . ,T−1.

Utility of consumption in t is formulated in terms of c̃t

U(C̃t) =
τt−1∑

j=0

Φ(yt, j) exp{−jδ}U(c̃tαjt).

A similar consideration relates to the utility of bequest. It is not reasonable to assume

that death only occurs at the end of a long time interval. However, to adjust the

utility of bequest accordingly is not as straightforward as in the case of consumption.

In particular, it is not clear which return should be used for discounting wealth. In

addition, preliminary analyses indicate that an approach similar to the one used for

consumption does not lead to a closed-form solution. Therefore we leave this issue to

future research.
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2.5 Choice of breakpoints

The linearization of the objective function requires choosing the number and the po-

sition of breakpoints. This choice affects the standard errors of the SLP optimization

results as shown in Section 3. We define separate breakpoints for consumption and

bequest to account for the different orders of magnitude of the two variables. In ad-

dition, these variables may show considerable variation across stages which requires

using different breakpoints for each stage, too.

To define the minimum and maximum breakpoints for consumption we use closed-

form solutions from Ingersoll (1987, p. 238, 242) and Duffie (1996, p. 198) as a guideline.

To determine minimum and maximum breakpoints of bequest we consider a simplified

version of the problem. For all nodes of a specific stage we assume that the fraction of

consumed wealth and the asset allocation is the same. We use the same returns that

are subsequently used to solve the SLP. Then we define a random grid of consumption-

wealth ratios and asset allocations which obey leverage constraints and other bounds.

We evaluate the objective function for each element of the grid, whereby we can use

the exact form of the utility function. The optimal solution provides a rough guess for

the order of magnitude and the dispersion of consumption and bequest in each stage.

This guess is used to define the minimum and maximum breakpoints required for the

linearization of the utility function.

To obtain optimal positions of the remaining breakpoints we have considered and

tested the following alternatives:

1. minimize the vertical distance between the piecewise linear function and the non-

linear utility function at the midpoints of two adjacent breakpoints,

2. minimize the area between the utility function and the piecewise linear function,

or

3. use the curvature of the utility function.

We have found that all three methods yield similar results in terms of the standard
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errors of the solution. In the applications presented in Section 3 we use the curvature-

based approach since it requires no optimization, and it is also much faster than the

other methods. The algorithm first divides the interval between b0
t and bm

t into n

equally wide segments separated by the points βj
t (j=0, . . . , n) where β0

t = b0
t and

βm
t =bm

t . The curvature for each βj
t is defined as (for details see Hanke and Huber

2008)

κj
t =

U ′′(βj
t )

(1 + [U ′(βj
t )]2)3/2

.

The average curvature in each segment is the arithmetic mean of two consecutive

curvatures

κj
t = 0.5

(
κj−1

t + κj
t

)
j = 1, . . . ,m.

The relative average curvature is given by

κ̂j
t =

κj
t∑

j κj
t

j = 1, . . . , m

and is used to compute the number of breakpoints in each segment nj
t=[m·κ̂j

t ], where

[·] denotes rounding to the nearest integer (surplus breakpoints can be ignored). The

position of breakpoints is defined by

bj
t = bj−1

t + (βj+1
t − βj

t )/nj
t j = 1, . . . , m− 1.

2.6 Scenario generation and choice of intervals

The uncertainty associated with the consumption-investment problem is modelled by

a K-dimensional random process. The multivariate return process evolves in discrete

time, and the underlying probability distributions are approximated by discrete distri-
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butions in terms of a scenario tree. We follow the approach by Høyland and Wallace

(2001), Høyland et al. (2003) and Kaut (2003) to match the first four moments (in-

cluding the correlations) of the simulated processes. For a K-dimensional process a

branching factor of 2K is necessary to match the first four (co)moments within rea-

sonable time. More nodes facilitate the matching of moments but increase the number

of scenarios. In the examples presented in Section 3 we set nt=2K+2, ∀t. To avoid

arbitrage opportunities in the simulated returns (which would be exploited by the

optimization algorithm) we apply the procedure proposed by Klaassen (2002).

The number of scenarios in the tree grows exponentially with the number of stages

(at which decisions are made) and the number of scenarios following each node. Given

the long period of time covered by a life-cycle model, it is computationally infeasible to

work with annual decision (rebalancing) intervals over the entire lifetime of an investor.

To keep the total number of scenarios practically manageable (e.g. several thousand

scenarios) only a rather small number of stages (e.g. three to six) and a small number of

nodes is usually considered. For example, in Dempster et al. (2003) the first revision of

the portfolio is made after one year since the initial decisions are considered to be most

important. The remaining time intervals are much longer and serve to approximate the

fact that further portfolio revisions are possible until the planning horizon is reached.

This approach implies that the investor is ’locked in’ in the chosen asset allocation for

a considerable amount of time – possibly much longer than the planned or anticipated

rebalancing interval. This problem can be partly alleviated by using more stages and

shorter time intervals, but more scenarios and longer solution times would be required.

Therefore we consider a different approach which consists of a sequence of one-

year periods followed by a long, steady-state period which lasts until the maximum

lifetime of the investor. This design accounts for the possibility that external cash

flows in the near future can be anticipated reasonably well or are even known exactly.

Thus, the effect of those cash flows on portfolio and rebalancing decisions in the first

few years is taken into account. We use the analytical solution obtained by Richard
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(1975) to derive the utility from optimal consumption and investment decisions in the

steady-state period. This amounts to reformulate the objective function as follows:

U(C0)+E

[
T−1∑

t=1

ΘtU(B̃t)Dt +
T−2∑

t=1

ΛtU(C̃t)Dt + ΛT−1J(W̃+
T−1, yT−1)DT−1

]
−→ max .

J(W̃+
T−1, yT−1) is the value function (2) defined in Appendix A. It depends on available

wealth W̃+
T−1 (which includes the present value of future labor income or other cash

flows) and the age of the investor yT−1 at the beginning of the steady-state period.

As described in Appendix A the value function is derived in a continuous-time setting.

It accounts for optimal consumption and trading, the investor’s survival probability,

and it is based on geometric Brownian motions for the risky assets and power utility.

To implement the steady-state solution according to Richard (1975) we need to define

the tangency portfolio. To be consistent with his continuous-time setting the means of

the assets are defined as µ+0.5diag(C) (where µ is the vector of mean log returns and

C is their covariance matrix). An asset which earns the risk-free rate is added to the

set of traded assets. Its (constant) return r is also included in the check for arbitrage

opportunities in the scenario generation.

Using analytical results from a continuous-time framework in the discrete-time op-

timization model has obvious advantages. We avoid the unrealistic implications asso-

ciated with long rebalancing intervals, and we can reduce the number of stages and

the size of the scenario tree. It has to be admitted, however, that the value function

does not account for restrictions on asset weights or transaction costs. There is also

an inconsistency associated with combining one-year decision intervals in discrete time

with continuous consumption and trading. In our opinion, however, the advantages

outweigh these drawbacks by far.
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3 Numerical results

To test the scenario generation and the SLP formulation we first present results from

cases where closed-form solutions are available. Thereafter we consider life-cycle con-

sumption and asset allocation decisions in settings which include cash flows and labor

income, and we investigate the effects associated with long rebalancing intervals.

Closed-form solutions are obtained from Ingersoll (1987), Duffie (1996) and Richard

(1975) (see Appendix A) and compared to the SLP-based results in terms of consump-

tion and asset allocation decisions. In case of uncertain lifetime we use survival proba-

bilities for Austrian men estimated in 2005. For cases with certain lifetime the survival

probabilities ϕ are set to 1 (except for the final one). We consider two risky assets

with a drift rate of 0.06 and a risk-free asset with a return of 0.04. The correlation

among risky assets is 0.5 and their volatility is 0.2.2 The node structures considered

are 6×6 and 36×12, and the linearization of the objective is based on 40 and 80 break-

points, respectively. We present results for stage t=0 in terms of means and standard

errors from sampling and solving the model 100 times. The same 100 scenario trees

are used in each setting (e.g. for varying risk aversion or time preference). We consider

small-scale problems with only a few scenarios (36 and 432, respectively) which can

be solved in only a few seconds. By solving such problems repeatedly we can quickly

obtain standard errors of the optimal solutions. This is preferable to solving large-scale

problems once, which provide better but unknown precision.

Table 1 shows that closed-form results can be replicated with relatively high preci-

sion even if only a few scenarios are used. The standard errors for optimal consumption

are negligibly small. The slight discrepancies found for optimal consumption may be

explained by our combination of the discrete-time SLP structure with the steady-state

solution (which implies continuous consumption and rebalancing). The precision of

portfolio weights is lower than for consumption. However, the accuracy of the results

2This choice yields an equally weighted portfolio for an investor with log utility. With power utility and
γ>1 the weights of the risky assets are reduced by the factor 1/γ.
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can be improved by increasing the number of scenarios, and/or using more breakpoints

in the linearization of the utility function.

Given that closed-form solutions can be replicated very well we now analyze optimal

consumption and asset allocation over the life-cycle using assumptions where closed-

form solutions are not available. The results in the rest of this section are based on

scenario trees with four stages, starting with three one-year periods, and followed by

a long period which lasts until the maximum age of 101 years. The node structure is

6×6×6 which amounts to 216 scenarios. The linearization of the objective function is

based on the curvature approach using 40 breakpoints. We use the same set of assets

(with the same stochastic properties) as in Table 1.

We first consider the effect of fixed cash in- and outflows on consumption-investment

decisions. Cash flows equal to±0.6w0 and±w0 are assumed to take place in t=1 or t=3.

We take transaction costs of 0.5% for purchases and sales into account. Initial wealth

w0 is held only in asset A. Table 2 shows a variety of interesting effects. As expected, the

larger the cash flow, the stronger the impact on consumption and investment (compared

to the case of zero cash flows). However, consumption does not respond symmetrically

to in- and outflows. Outflows occuring at later stages allow for more consumption in

t=0, whereas the timing of inflows does not affect consumption. This can be explained

by the constraint that total wealth has to remain positive under all circumstances.

The share invested in risky assets can be higher if outflows are postponed. The reverse

holds for inflows. We also note that the share of asset A exceeds the share of asset B

in all cases. Since initial wealth is only invested in A, transactions costs prevent equal

weights of the two risky assets.

Bodie et al. (1992) and Chen et al. (2006) find a significant impact of human

capital on asset allocation decisions over the life cycle. They consider cases where

initial labor income is between 10% and 30% of initial wealth, and their results are

characterized by extreme short positions in the risk-free asset. We have replicated

their results to the extent possible given the differences in the two settings. We also
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investigate the importance of labor income on consumption and investment decisions,

but in addition we take mortality risk into account. As opposed to their models

we treat labor income as deterministic to make use of Richard’s (1975) closed-form

solution. However, the uncertainty associated with survival probabilities is accounted

for as described in equation (1).

Table 3 shows optimal consumption and asset weights for various assumptions about

labor income (L0=5, 10 and 15). We find that consumption increases with both labor

income and age. This can be explained by the hedging effect associated with the

certain stream of income. As expected, accounting for mortality risk has little impact

on consumption for relatively young investors. Older investors who take mortality risk

into account consume more, and this effect increases with income. In agreement with

Bodie et al. (1992) we also find a distinct age effect: The share of risky assets decreases

with age. The hedging effect leads to an increase in the share of risky assets as labor

income increases. Accounting for mortality risk does not have a consistent effect on the

asset allocation. It seems to depend on the level of income and age but the patterns

are difficult to explain.

In Section 2.6 we have argued that choosing rather long time intervals between

stages may distort results compared to the case of frequent rebalancing. In Table 4

we show results for different rebalancing intervals. We compare solutions which are

based on adjusting utility for optimal subperiod consumption as derived in Section 2.4

(columns labelled ’yes’) to those where utility of consumption is only adjusted for the

length of the interval (i.e. αt=τt). In general, we find that discrepancies between the

two versions become only apparent if very long intervals are considered. In particular,

the adjusted annual consumption is very stable across intervals which indicates that

the adjustment has the intended effect. Except for 20-year intervals, both versions

produce almost the same asset allocation, and the investment in risky assets slightly

drops with the length of the interval. The strong discrepancy between the two versions

for 20-year intervals is hard to explain. Overall, the investment results indicate the
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presence of further effects associated with long rebalancing intervals which are not yet

accounted for (e.g. death only occurs at the end of a period; there is no possibility

to rebalance the portfolio during a long holding period, which leads to a reduction in

the share of risky assets). As already indicated in Section 2.4, however, the necessary

adjustments are not straightforward and are left to future research. Unless this issue

has been solved satisfactorily, these results suggest that very long rebalancing intervals

should rather not be used.

4 Conclusion

We have presented a stochastic linear programming approach to obtain optimal con-

sumption and life-cycle asset allocation of an investor with uncertain lifetime. We

have first shown that available closed-form solutions can be accurately replicated with

the SLP-based approach. Key requirements are exactly matching the moments of the

distributions of asset returns, and the linearization of the utility function. We use a

discrete scenario tree with only a few stages. To cover the very long time span required

in a life-cycle context we suggest working with a few one-year periods followed by a

long, steady-state period. We find that the SLP approach is a flexible tool that may

be used to assess the importance of aspects such as mortality risk, external cash flows,

transaction costs, short-sale constraints, and labor income.

Appendix

A Closed-form solutions in case of uncertain

lifetime
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Richard (1975) obtains a closed-form solution for the consumption and investment

decisions of an uncertain lived investor in a continuous time model. He assumes geo-

metric Brownian motions for the risky assets, one riskless asset, and power utility for

consumption and bequest of an investor whose current age is yt. Provided that relative

risk aversion γ is the same in both utility functions, the closed-form solution for the

value function J is given by

J(Wt, yt) =
ayt

1− γ
(Wt + Ht)1−γ . (2)

The value function is based on the following definitions:

ayt =
(∫ τ̄

yt

k(θ)
S(θ)
S(yt)

exp
{

1− γ

γ
(v + r)(θ − yt)

}
dθ

)γ

with

k(θ) = [h(θ)m(θ)]1/γ + m(θ)1/γ m(θ) = exp{−δ(θ − yt)} v =
(νp − r)2

2γσ2
p

.

νp and σp are drift and standard deviation of the tangency portfolio (which only consists

of risky assets). S(yt) is the survival function defined as

S(yt) = P (θ ≥ yt) =
∫ τ̄

yt

ϑ(θ)dθ

∫ τ̄

0
ϑ(θ)dθ = 1.

h(θ) is the conditional probability density for death conditional upon the investor being

alive at age θ, so that h(θ)=ϑ(θ)/S(θ).

Ht is the present value of labor income received until the final age of the underlying

mortality table τ̄=101. Ht assumes an actuarially fair life insurance of labor income

and is given by

Ht =
∫ τ̄

yt

L(s)
S(s)
S(yt)

exp {−(s− yt)r} ds,
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where L(s) is continuous labor income and S(s)/S(yt) is the conditional probability

density to be alive at time s conditional upon the investor being alive at age yt. This

definition of Ht agrees with the continuous-time formulation of Richard (1975). The

results presented in Section 3 are based on the discrete-time version of labor income

defined in Section 2.2, equation (1).

Since we work with discrete mortality tables where age is integer-valued we can

simplify the definition of ayt as follows:

ayt =




τ̄−1∑

θ=yt

k(θ)
S(θ)
S(yt)

∫ θ+1

θ
exp {c(u− yt)} du




γ

c =
1− γ

γ
(v + r)

ayt =




τ̄−1∑

θ=yt

k(θ)
S(θ)
S(yt)

[exp{c(θ − yt)}(exp{c} − 1)/c]




γ

.
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consumption asset A asset B risk-free
log utility, d=1, certain lifetime
closed-form solution 1.61 33.33 33.33 33.33
40 breakpoints, 6×6 nodes 1.65

(0.00)
31.80
(0.19)

31.78
(0.20)

36.42
(0.12)

80 breakpoints, 6×6 nodes 1.63
(0.00)

32.86
(0.07)

32.80
(0.08)

34.34
(0.14)

40 breakpoints, 36×12 nodes 1.64
(0.00)

32.97
(0.07)

32.99
(0.06)

34.04
(0.05)

80 breakpoints, 36×12 nodes 1.63
(0.00)

33.01
(0.04)

32.98
(0.04)

34.01
(0.02)

log utility, d=0.96, certain lifetime
closed-form solution 4.35 33.33 33.33 33.33
40 breakpoints, 6×6 nodes 4.27

(0.00)
32.94
(0.09)

33.03
(0.08)

34.03
(0.11)

80 breakpoints, 6×6 nodes 4.37
(0.00)

34.60
(0.22)

34.72
(0.21)

30.67
(0.42)

40 breakpoints, 36×12 nodes 4.36
(0.00)

33.04
(0.05)

33.01
(0.06)

33.95
(0.04)

80 breakpoints, 36×12 nodes 4.36
(0.00)

33.00
(0.04)

33.01
(0.04)

33.99
(0.02)

log utility, d=0.96, uncertain lifetime
closed-form solution 5.47 33.33 33.33 33.33
40 breakpoints, 6×6 nodes 5.40

(0.00)
33.38
(0.03)

33.38
(0.05)

33.25
(0.05)

80 breakpoints, 6×6 nodes 5.40
(0.00)

32.68
(0.06)

32.85
(0.05)

34.47
(0.08)

40 breakpoints, 36×12 nodes 5.40
(0.00)

33.05
(0.05)

33.03
(0.04)

33.92
(0.04)

80 breakpoints, 36×12 nodes 5.39
(0.00)

33.01
(0.03)

32.98
(0.03)

34.01
(0.02)

power utility, γ=4, d=0.96, certain lifetime
closed-form solution 4.30 8.33 8.33 83.33
40 breakpoints, 6×6 nodes 4.47

(0.00)
8.83
(0.12)

8.55
(0.11)

82.61
(0.14)

80 breakpoints, 6×6 nodes 4.46
(0.00)

8.80
(0.07)

8.61
(0.05)

82.59
(0.11)

40 breakpoints, 36×12 nodes 4.48
(0.00)

8.27
(0.03)

8.20
(0.03)

83.54
(0.03)

80 breakpoints, 36×12 nodes 4.46
(0.00)

8.24
(0.02)

8.26
(0.02)

83.50
(0.02)

Table 1: Optimal consumption and asset allocation from closed-from solutions and the stochastic linear
program in t=0. Results are presented in terms of means and standard errors (in parentheses) from 100
solutions of the problem. The same 100 scenario trees are used for each entry of the table. The investor is
assumed to be 40 years old. d is the time discount factor. For cases with uncertain lifetime we use Austrian
mortality tables for men.
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cash flow stage consumption asset A asset B risk-free
0 4.3

(0.00)
10.2
(0.04)

6.0
(0.03)

83.8
(0.04)

–60 t=1 1.8
(0.00)

4.3
(0.01)

2.2
(0.02)

93.5
(0.02)

t=3 2.1
(0.00)

4.8
(0.02)

2.3
(0.02)

92.9
(0.03)

–100 t=1 0.15
(0.00)

0.40
(0.00)

0.14
(0.01)

99.5
(0.01)

t=3 0.47
(0.00)

1.07
(0.01)

0.61
(0.00)

98.3
(0.01)

+60 t=1 6.8
(0.00)

17.0
(0.11)

9.7
(0.08)

73.3
(0.18)

t=3 6.8
(0.00)

16.2
(0.05)

9.2
(0.07)

74.6
(0.08)

+100 t=1 8.4
(0.01)

23.9
(0.08)

11.2
(0.14)

64.9
(0.13)

t=3 8.3
(0.00)

22.6
(0.00)

10.4
(0.00)

66.9
(0.00)

Table 2: Optimal consumption and asset allocation for various assumptions about current, annual labor
income L0. Initial wealth is w0=100. Results are presented in terms of means and standard errors (in
parentheses) from 100 solutions of the problem. We consider a man at age 40 with power utility (γ=4) and
time discount factor d=0.96.
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consumption asset A asset B risk-free
income age u c u c u c u c

40 9.2
(0.00)

9.4
(0.00)

16.9
(0.24)

17.3
(0.09)

17.1
(0.24)

17.2
(0.09)

65.9
(0.45)

65.5
(0.17)

L0=5 60 11.5
(0.01)

9.1
(0.00)

15.5
(0.12)

17.3
(0.08)

15.4
(0.10)

17.4
(0.08)

69.1
(0.17)

65.3
(0.15)

80 17.8
(0.00)

11.4
(0.00)

14.7
(0.17)

14.1
(0.15)

14.6
(0.16)

13.8
(0.17)

70.7
(0.28)

72.1
(0.28)

40 12.0
(0.00)

12.7
(0.00)

25.2
(0.29)

27.1
(0.18)

25.4
(0.32)

27.0
(0.21)

49.4
(0.58)

45.9
(0.25)

L0=10 60 17.1
(0.00)

11.9
(0.00)

24.8
(0.27)

25.4
(0.14)

25.1
(0.26)

25.2
(0.15)

50.1
(0.43)

49.3
(0.21)

80 24.9
(0.01)

16.2
(0.00)

20.2
(0.12)

19.9
(0.13)

20.0
(0.14)

19.9
(0.13)

59.9
(0.20)

60.2
(0.26)

40 13.5
(0.00)

13.6
(0.00)

34.5
(0.43)

32.6
(0.45)

35.0
(0.39)

31.4
(0.45)

30.5
(0.72)

36.0
(0.68)

L0=20 60 19.6
(0.00)

14.8
(0.00)

32.2
(0.19)

33.0
(0.30)

32.2
(0.18)

32.4
(0.31)

35.6
(0.23)

34.6
(0.52)

80 31.8
(0.00)

19.5
(0.00)

26.9
(0.22)

24.8
(0.16)

26.9
(0.21)

25.2
(0.19)

46.2
(0.26)

50.0
(0.18)

Table 3: Optimal consumption and asset allocation for various assumptions about current, annual labor
income L0. Initial wealth is w0=100. Results are presented in terms of means and standard errors (in
parentheses) from 100 solutions of the problem. We consider a man with power utility (γ=4) and time
discount factor d=0.96. Columns labelled with ’u’ (uncertain lifetime) indicate that mortality risk is taken
into account. Columns labelled with ’c’ (certain lifetime) ignore mortality risk.
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consumption asset A asset B risk-free
intervals yes no yes no yes no yes no

1-1-1 4.4
(0.00)

7.5
(0.08)

7.5
(0.08)

85.1
(0.14)

5-5-5 4.7
(0.00)

4.3
(0.00)

8.1
(0.08)

8.0
(0.07)

8.1
(0.08)

8.0
(0.07)

83.7
(0.15)

84.0
(0.13)

10-10-10 4.8
(0.00)

4.1
(0.00)

7.5
(0.11)

7.6
(0.12)

7.6
(0.09)

7.5
(0.11)

84.9
(0.19)

84.8
(0.22)

20-20-20 4.7
(0.00)

3.5
(0.00)

6.3
(0.12)

11.4
(0.24)

6.3
(0.12)

11.7
(0.20)

86.8
(0.22)

77.0
(0.41)

Table 4: Optimal consumption and asset allocation in t=0 for various rebalancing intervals. Consumption
is expressed in annual terms. Results are presented in terms of means and standard errors (in parentheses)
from 100 solutions of the problem. We consider a man at age 40 with power utility (γ=4) and time discount
factor d=0.96. The notation τ -τ -τ indicates the use of three rebalancing intervals of length τ , followed by a
sufficiently long steady-state period. Columns labelled with ’yes’ indicate that the optimal adjustment for
subperiod consumption has been taken into account. ’no’ refers to no adjustment.
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