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Abstract

The fact that the implied volatility smiles for equity indices are strongly down-
ward sloping, while the typical individual stock exhibits either a flat or even
an upward sloping smile is sometimes considered puzzling. We show that this
effect can easily be generated in a simple and parsimonious two-factor stochas-
tic volatility model in the spirit of Bates (2000). From a theoretical perspective
our paper adds to the literature by proving a ’diversification’ result with re-
spect to idiosyncratic stochastic volatility components of individual stocks, so
that in the limit for infinitely many stocks, the prices of index options are
solely based on the common volatility component. This result holds without
restrictive assumptions on the structure of the correlations between stock re-
turns and volatility changes. We employ Monte Carlo simulation to show that
our model can reproduce the empirical observations quite well for an index of
30 stocks similar to the Dow Jones Industrial Average.
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1 Introduction and Motivation

The fact that the shapes of the implied volatility curves for the major equity market

indices and the typical individual stocks are markedly different is sometimes seen as

an important puzzle in the area of empirical option pricing research. For example,

in a recent paper Bakshi, Kapadia, and Madan (2003) ask the following question:

’What causes the slope of the individual smiles to reverse its sign? The differential

pricing in the cross section of strikes and in the cross section is puzzling.’ (p. 123).

The fact that implied volatilities for options on single stocks can be increasing in the

strike price is of course in sharp contrast with the stylized empirical facts about index

options, for which smiles are basically always downward sloping and, in addition,

rather steep.

Still, there are several papers tackling this issue explicitly. For example, Buraschi,

Trojani, and Vedolin (2008), also motivated by the above quote from Bakshi, Ka-

padia, and Madan (2003), develop a complex general equilibrium model with het-

erogeneous beliefs, which can actually produce different smile shapes for indices and

individual stocks, and especially upward sloping smiles for stocks. On the other

hand, it is not clear if to relate the upward sloping smiles for individual stocks to

investors’ optimism is indeed a fully satisfactory solution to the problem. The mech-

anism which ultimately produces this result is very complicated, and it is not easy

to detect the factors in the model which are ultimately responsible for this outcome.

In this paper we propose a rather different line of argument. A relatively simple

two-factor model in the spirit of Bates (2000) with a common and an idiosyncratic

volatility factor is very well able to reproduce the structures that we see in the data.

All that is necessary in our setup is a negative correlation between the common

volatility factor and stock returns and the opposite relation for the idiosyncratic

volatility component. We value index options as basket options, thereby taking into

account the restriction that an index level is nothing but a weighted sum of individual
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stock prices. An important theoretical result we derive is that the idiosyncratic

component of stochastic stock return volatility follows a ’diversification law’ very

similar to the well-known one for returns. As intuitive this result may seem, it turns

out to be highly non-trivial and requires a full proof based on results from the

convergence theory for stochastic processes. Since there is no closed-form solution

for the price of an index option, given two-factor stochastic volatility models for

individual stocks, we apply Monte Carlo simulation to value index options. This

also represents a ’finite-sample’ application of our theoretical result, and we show

that even this simple model does a very good job in explaining the stylized facts in

the data.

There are a couple of other papers, dealing either with differences between

individual stocks and indices or time-varying slopes of implied volatility smiles. In

a jump-diffusion setup Branger and Schlag (2004) decompose both types of risk

factors into an idiosyncratic and a common part and show that it is the intensity

for common jumps which controls the shape of the smile for index options relative

to that for the typical individual stock. As a generalization of the model developed

by Heston (1993), Bates (2000) suggests the above mentioned two-factor stochastic

volatility model, which allows for a stochastic correlation between stock returns and

volatility changes and thus makes the slope of the implied volatility smile stochastic

as well. Carr and Wu (2007) and Bakshi, Carr, and Wu (2008) also take up the issue

of a time-varying slope of the implied volatility smile and suggest, among other

things, models based on Lévy processes.

The remainder of the paper is organized as follows. In Section 2 we introduce

the model setup. In Section 3 we present the results of our Monte Carlo analysis for

the valuation of index options. Section 4 concludes.
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2 Model and Theoretical Results

2.1 Basic setup

In our economy there are n stocks which exhibit stochastic volatilities driven by two

components as in the model suggested by Bates (2000). In detail, the price Si of

stock i and its two volatility components Vm and Vi satisfy the following system of

stochastic differential equations under the risk-neutral measure Q:

dSt,i = St,i

[
r dt+

√
Vt,m

(
ρi,mdW

m,1
t +

√
1− ρ2

i,mdW
m,2
t

)
+
√
Vt,i

(
ρi,idW

i,1
t +

√
1− ρ2

i,idW
i,2
t

)]
dVt,m = κm (θm − Vt,m) dt+ σm

√
Vt,m dW

m,1
t

dVt,i = κi (θi − Vt,i) dt+ σi
√
Vt,i dW

i,1
t .

We will refer to Vm as the common or market component of volatility, while Vi will

be called the idiosyncratic component. The two volatility components follow mean-

reverting square-root processes to guarantee non-negativity. Wm,1, Wm,2, W i,1, and

W i,2 are independent standard Wiener processes.

It will turn out that the key parameters to control the slopes of the implied

volatility curves for the index and the individual stocks in this model are the cor-

relation coefficients ρi,m and ρi,i. ρi,m represents the correlation between the return

on stock i and the market volatility component, and ρi,i is the analogous quantity

for the idiosyncratic component. It is the signs of these two correlation coefficients

which are ultimately responsible for the shape of the smiles for the index and the

individual stocks. In detail a negative value for ρi,m and a positive one for ρi,i will

lead to a relatively pronounced negative slope of the index smile, while the implied

volatility curves for individual stocks will be flat or even upward sloping, depend-

ing on the numerical values for the two correlation coefficients and on the current

realizations of the two volatility components. When the market volatility is high as
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compared to the idiosyncratic volatility, the correlation between the overall volatil-

ity and the return on the stock goes to ρi,m, and the smile is downward sloping. If

the idiosyncratic volatility dominates, it is upward sloping.

In our approach the index level I is represented as an equally weighted sum

of the n stock prices, i.e. It = 1
n

∑n
i=1 St,i. While this is a somewhat simplifying

assumption, the exact structure of the weights of individual stocks in the index

formula is of minor relevance for the issue we are interested in. Intuitively, the overall

volatility of the index is mainly driven by the global volatility component, while the

impact of the idiosyncratic volatility components decreases when the number of

stocks in the index increases. With the correlation between the global volatility and

the returns on individual stocks being negative, the volatility smile for the index is

downward sloping.

For the special case when all stocks and all idiosyncratic volatilities follow ex-

actly the same process, in particular when the correlation between stock returns and

the market and idiosyncratic volatility components are the same for all stocks, we

explicitly derive two interesting limiting results when the number of stocks in the

index becomes large. First, the idiosyncratic volatility components of the individual

stocks vanish from the dynamics of the index, which is then solely driven by the

common component. Second, also in the limit for n tending to infinity, index op-

tion prices can be computed based on a Heston type model with only the common

volatility component. Note that the above restrictions on the parameters still allow

the parameters of the common component to be different from that of the idiosyn-

cratic part of volatility, i.e. it is perfectly possible to consider a model with κm 6= κi

etc.

For the more general case with (almost) arbitrary parameters of the individual

processes our results can be derived in a very similar fashion. This extension is

basically straightforward, although the associated proofs would be rather lengthy,
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since one has to take into account the fact that the second moments of all processes

would then be different. To provide as much intuition as possible, we therefore prefer

to present the simpler proofs for the case of identical parameters.

2.2 Diversification in the limit

The first result concerns the limiting properties of the idiosyncratic volatility com-

ponent (all proofs can be found in the appendix). Note that, compared to the initial

model presentation, the Cholesky decomposition of the covariance matrix is repre-

sented the other way around here. This is, of course, immaterial for the results.

Lemma 1 (Vanishing idiosyncratic volatility) Let

dSt,i = St,i
(
r dt+

√
Vt,m dW

m,1
t +

√
Vt,i dW

i,1
t

)
dVt,j = κj(θj − Vt,j) dt+ σj

√
Vt,j

(
ρj dW

j,1
t +

√
1− ρ2

j W
j,2
t

) (1)

for j ∈ {i,m} (i = 1, . . . , n). W j,k(k = 1, 2, j ∈ {i,m}) are Brownian motions with

〈W i,k,W j,l〉 = 0 for i 6= j and/or k 6= l. Assume

ρj <
κj
σjω

and

(ρjσjω − κj)2 > σ3
j (ω

2 − ω)

for j = m,ω = 2 and for j = 1, ω = 4 respectively. Then

lim
n→∞

E

[
1

n2

∫ t

0

n∑
i=1

S2
iuViu du

]
= 0.

The lemma says that in the limit the idiosyncratic volatility components of the

individual stocks no longer have an impact on the quadratic variation of the index

level. A proof is given in the Appendix.

The implications of this result in terms of financial economics are far-reaching,

since individual stock price processes can be (almost) arbitrarily parametrized to
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produce a wide variety of shapes for the implied volatility smile via the idiosyncratic

component, while the index would always exhibit the smile that is generated by

the common component. In that sense Lemma 1 opens up the possibility that the

prices of index options are based on the common component only, while options

on individual stocks are affected by both the common and the idiosyncratic part of

volatility, so that they could basically exhibit different shapes of the smile, while the

smile for index options would always remain the same based on the parameters for

the common component.

2.3 Index option pricing

The following theorem establishes the key theoretical result of the paper by showing

that the diversification result in Lemma 1 can be extended to option pricing.

Theorem 1 (Index put option pricing) Let the dynamics of the asset prices be

given by the system (1), and let I
(n)
t ≡ 1

n

∑n
i=1 St,i. Furthermore, assume that the

conditions of Lemma 2 in the appendix are satisfied. Then it holds that

lim
n→∞

E

[(
K − I(n)

T

)+
]

= E

[(
K − I(∞)

T

)+
]

where

I
(∞)
t ≡ I

(∞)
0 +

∫ t

0

I(∞)
u r du+

∫ t

0

I(∞)
u

√
Vu,m dW

m,1
u

I
(∞)
0 ≡ lim

n→∞
I

(n)
0

Note that the theorem states the result for put options, but put-call parity of course

assures the corresponding fact for calls. In reality one would furthermore never be

able to observe an index based on an infinite number of stocks. Nevertheless, the

result gives a hint what to expect in terms of indices with different numbers of

stocks. The larger this number, the more pronounced index option prices (or, more
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precisely, the shape of the smile) will potentially differ from the smiles of individual

stocks.

3 Simulation Analysis

In this section we will analyze the quantitative output of the model. While the prices

of options on the individual stocks can be computed in closed form using the formula

developed by Bates (2000), this is not possible for the index as a basket of stocks.

This is not a special property of our model, since even in the simplest possible case

of geometric Brownian motions for the individual stocks, the index would not be

lognormally distributed (except in a situation where all stocks are perfectly positively

correlated) and options on it would have to be priced numerically.

We therefore discretize the stochastic processes for the individual stocks using a

simple Euler scheme, which has proved to be quite robust and reliable in simulations

with small time increments (see, e.g., Christoffersen, Jacobs, and Mimouni (2007).

We consider options with a maturity of three months. The number of trading days

per year is assumed to be 252, so that the chosen time to maturity represents 63

trading days. The dynamics of the prices and volatilities are simulated assuming 10

time steps per day, so that the discretization error is likely to be rather small. Should

nevertheless a value less than 10−4 be drawn for one of the variance processes, its

value would be mirrored at this boundary level of 10−4. All the results are based

on 100,000 simulation runs. The index is composed of 30 stocks and thus resembles

the Dow Jones Industrial rather closely. At the same time, our index avoids the

major deficiencies of the Dow, since in our case all stocks have the same initial price

(S0,i = 100 for i = 1, . . . , 30), and there are no dividends.

In our base scenario the parameters are given by θm = 0.08, κm = 2, σm = 0.4,

ρm = −0.8 for the market component and by θi = 0.08, κi = 2, σi = 0.4, ρi = 0.8
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for the idiosyncratic component. The results for this setting are shown in Figure 1,

where implied volatility is plotted as a function of moneyness M (defined as strike

price divided by stock price or index level, respectively). The option prices for the

individual stocks (and thus, implicitly also the volatility smile) are calculated by

Fourier inversion, while the smile for the index is computed via a Monte Carlo sim-

ulation of 30 stocks, all of which exhibit the dynamics represented by the parameter

set just described.

Like in the Heston (1993) model, the slope of the smile in the two-factor model

is driven by the correlation between volatility changes and returns on the underlying.

In the two-factor case there are two such correlations, and their weights in the overall

correlation depend on the current relative magnitude of the two volatilities. So when

V0,i is large relative to V0,m, then the positive correlation ρi,i associated with Vi will

dominate and induce a slightly upward sloping smile. The value for the implied

volatility of the equity option is 0.351 for a moneyness of M = 0.8 and 0.369 for

M = 1.2. In between the implied volatilities first decrease until roughly M = 0.92

and then increase monotonically. Since the empirically relevant range of strikes is

certainly located to the right of 0.92, one would observe a strictly upward sloping

implied volatility curve for the typical individual stock. On the other hand, the index

exhibits a pronounced negative slope in its smile. Implied volatility falls from almost

30% for M = 0.8 to around 17% for M = 1.2. so the model re-produces the patterns

observed in empirical studies qualitatively quite well.

One may ask if the values chosen for the correlation coefficients ρi,i and ρi,m

are not too extreme. Absolute values of 0.8 can certainly be considered large, but

the main purpose of our paper is to match the qualitative properties of the respective

smile curves with a rather parsimonious model, rather than to focus on a perfect

calibration of smiles for different maturities, for which jumps would be an absolute

necessity. So when stochastic volatility alone is to produce a certain steepness in the
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index smile, a larger value in absolute terms for the correlation ρi,m is needed, and

in turn ρi,i must also be larger to compensate for this.

Figures 2, 3, and 4 show the smile curves for variations of the basic scenario,

where the starting values for the idiosyncratic volatility component V0,i and the

correlation coefficients ρi,i and ρi,m need not be the same for all 30 stocks anymore.

To avoid a systematic influence of our choice of parameters, we randomly assigned

parameter values to the individual stocks by sampling from a uniform distribution

for the given parameter(s). The index is then computed on the basis of these 30

simulated stock prices. In the graphs, however, the curves for the individual stocks

are those for the representative parameter values described in the caption of the

respective figure, to make the pictures easier to interpret.

First, we vary the initial value of idiosyncratic volatility by sampling V0,i from

a uniform distribution over the interval [0.5θi; 1.5θi]. As one can see immediately

from Figure 2, different values for V0,i mostly change the level of the individual

implied volatility curves, but leave the general findings unchanged. Again, when the

market component is small relative to the (now different) Vi, the individual smiles

are upward sloping, while the index exhibits the usual picture. When V0,m becomes

larger, the smile for individual stocks becomes symmetric and eventually downward

sloping. The index nevertheless retains a smile, which is in downward sloping in a

much more pronounced fashion than the one for the individual stocks.

Adding even more flexibility to the model by allowing the correlation coeffi-

cients ρi,i and ρi,m to differ across stocks yields the pictures shown in Figures 3 and

4. The variation in ρi,i was generated by sampling its value form a uniform distribu-

tion over [0; 0.8], while the correlation with the common component was drawn from

the interval [−0.8; 0]. These choices naturally limit the variation in individual and

index smiles that the model can produce. However, we consider it most important

to conserve the downward sloping index smile, while at the same time allowing for a
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wide variety of smile shapes for the individual stocks. The graphs in the two figures

confirm that our model offers a parsimonious explanation for the fact of different

smile shapes for indices and individual stocks. Of course, the effects are now slightly

less pronounced than in the original case where all correlations were chosen at the

extreme values of −0.8 and 0.8. Nevertheless, one obtains qualitatively the same

results as in the previous scenarios.

The main message from the graphs is that the individual stocks comprising

the index can be rather heterogeneous with respect to their dynamics, and even

exhibit upwards sloping smiles. As long as the correlations between stock returns

and the changes in the two volatility components have certain signs (and certain

critical magnitudes), the index will still have a downward sloping smile curve.

4 Conclusion

Index options are usually priced in basically the same way as options on a stock,

namely by assuming certain dynamics for the index level and potential state variables

like stochastic volatility. The index is, however, not given exogenously, its value is

derived from the prices of the stocks included. This fact becomes important when one

studies structural differences between stock and index options, since the dynamics

of the index are determined by the joint distribution of the stocks, and not the other

way around.

In this paper we have dealt with the (seemingly) puzzling empirical observation

that the implied volatility curves for indices are usually heavily sloped downwards,

while the smile curve for the typical stock is either rather flat or even upward sloping.

We have shown that this effect can result from a parsimonious two-factor stochastic

volatility model in the spirit of Bates (2000), where the key parameters turn out to be

the correlation coefficients of the two variance processes with the return on the stock.
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In case the correlation with the common volatility component is negative, while the

one with the idiosyncratic component is positive, we will obtain qualitatively exactly

the results documented in the empirical option pricing literature. Of course, since

we do not consider jumps in our model, we are not able to fit the smile perfectly,

but this extension seems rather straightforward.

In a next step it would be interesting to estimate the model empirically, based

on a set of individual stocks as well as an associated index to see how much the

correlation coefficients between stock returns and variance changes actually vary

cross-sectionally and if a common variance component can be identified in the data.
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A Proofs

A.1 Proof of Lemma 1

The following lemma will turn out to be useful in the proofs of the main results of
the paper.

Lemma 2 (Andersen/Piterbarg (2007)) Let

dXt = Xt(r dt+
√
Vt dW

(1)
t )

dVt = κ(θ − Vt) dt+ σ
√
Vt

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)
,

where the conditions
ρ <

κ

σω

and
(ρσω − κ)2 > σ3(ω2 − ω)

are satisfied. Then
E [(XT )ω] <∞.

Remark. In their Proposition 3.1, Andersen and Piterbarg (2007) show that suffi-

cient conditions are given by a < 0 and D > 0 where

a ≡ 2(ρσω − κ)

σ2

D ≡ a2 − 4b

with b ≡ ω(ω−1)
σ

.

We are now going to prove Lemma 1. Observe that, by Fubini’s theorem,

lim
n→∞

E

[
1

n2

∫ t

0

n∑
i=1

S2
u,iVu,i du

]

= lim
n→∞

1

n2

∫ t

0

n∑
i=1

E
[
S2
u,iVu,i

]
du

= lim
n→∞

1

n2
n

∫ t

0

E
[
S2
u,1Vu,1

]
du

= lim
n→∞

1

n

∫ t

0

E
[
S2
u,1Vu,1

]
du.
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Therefore, it is sufficient to show that

E
[
S2
u,1Vu,1

]
<∞.

Since

dSt,i = St,i

(
r dt+

√
Vt,m dW

m,1
t +

√
Vt,i dW

i,1
t

)
,

it follows that

St,i = S0,1 exp

{∫ t

0

(
r − 1

2
(Vu,m + Vu,i)

)
du+

∫ t

0

√
Vu,m dW

m,1
u +

∫ t

0

√
Vu,i dW

i,1
u

}
.

Defining

Xm
t ≡ exp

{∫ t

0

(
r − 1

2
Vu,m

)
du+

∫ t

0

√
Vu,m dW

m,1
u

}
X i
t ≡ exp

{∫ t

0

−1

2
Vu,i du+

∫ t

0

√
Vu,i dW

i,1
u

}
gives (for i = 1)

S2
t,1Vt,1 = S2

0,1 (Xm
t )2

((
X1
t

)2
Vt,1

)
where (Xm

t )2 and (X1
t )

2
V1t are independent. This implies

E
[
S2
t,1Vt,1

]
= S2

10E
[
(Xm

t )2]E [(X1
t

)2
V1t

]
≤ S2

0,1E
[
(Xm

t )2] (E [(X1
t

)4]
E
[
(Vt,1)

2])
Thus, the existence of the second moment of Xm

t , the fourth moment of X1
t and the

second one of Vt,1 are sufficient conditions for E
[
S2
u,1Vu,1

]
< ∞. Notice that Vt,1 is

a Bessel process such that the existence of the second moment is given. The rest of

the proof follows by Lemma 2 and the conditions stated there.
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A.2 Proof of Theorem 1

Consider first the following chain of equalities:

dI
(n)
t = d

(
1

n

n∑
i=1

St,i

)

=
1

n

n∑
i=1

dSt,i

=
1

n

n∑
i=1

St,i

(
r dt+

√
Vt,m dW

m,1
t +

√
Vt,i dW

i,1
t

)
= I

(n)
t

(
r dt+

√
Vt,m dW

m,1
t

)
+

1

n

n∑
i=1

St,i
√
Vt,i dW

i,1
t .

Using 〈W i,k,W j,l〉 = 0 for i 6= j and/or k 6= l, we have

d〈I(n)〉t =
(
I

(n)
t

)2

Vt,m dt+
1

n2

n∑
i=1

S2
t,iVt,i dt.

By a result in Protter (2005) (p. 271), the sequence {I(n)}n thus converges

to I(∞) uniformly on compacts in probability (ucp) if the process Y (n) defined by

Y
(n)
t ≡ 1

n

∑n
i=1

∫ t
0
St,i
√
Vt,idW

i,1 converges to zero in the semimartingale topology.

This is valid if Y (n) converges to zero prelocally in H2. This follows from Lemma 1

where we have shown that

lim
n→∞

E

( 1

n

∫ t

0

n∑
i=1

Su,i
√
Vu,i dWu

)2
 = lim

n→∞
E

[
1

n2

∫ t

0

n∑
i=1

S2
u,iVu,i du

]
= 0.

The rest of the claim then follows from the the portmanteau theorem of weak-

convergence theory (see, e.g., Billingsley (1968)).
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Figure 1:
Base Case

The graphs show the implied volatility smiles for the index (solid line) and for individual stocks
(dashed line) as a function of moneyness (defined as strike price divided by stock price or index
level, respectively). All individual stocks have the same dynamics.
The parameters are θm = 0.08, κm = 2, σm = 0.4, ρi,m = −0.8 for the common component, and
θi = 0.08, κi = 2, σi = 0.4, ρi,i = 0.8 for the idiosyncratic component. The initial values of the
idiosyncratic variance processes are set equal to their mean-reversion level, i.e. V0,i = θi, and we
consider three cases for the starting value V0,m of the common component: V0,m = 0.5 θm (upper
graph), V0,m = θm (middle graph) and V0,m = 1.5 θm (lower graph). The interest rate is set to
zero.
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Common component: V0,m = 0.5 θm
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Figure 2:
Different Initial Idiosyncratic Volatilities

The graphs show the implied volatility smiles as a function of moneyness for the index (lower
solid line) and for a representative set of individual stocks with different starting values for the
idiosyncratic variance component (upper lines).
The parameters are θm = 0.08, κm = 2, σm = 0.4, ρi,m = −0.8 for the market component, and
θi = 0.08, κi = 2, σi = 0.4, ρi,i = 0.8 for the idiosyncratic component. The initial values V0,i of the
idiosyncratic variance component are 0.5θi (upper solid line), θi (dashed line) and 1.5θi (dotted
line). We consider three cases for the starting value V0,m of the common component: V0,m = 0.5θM

(upper graph), V0,m = θM (middle graph) and V0,m = 1.5θM (lower graph). The interest rate is
set to zero.
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Common component: V0,m = 0.5 θm
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Figure 3:
Different Initial Idiosyncratic Volatilities and Different Correlations

with Idiosyncratic Volatility

The graphs show the implied volatility smiles as a function of moneyness for the index (lower
solid line) and for a representative set of individual stocks with different starting values for the
idiosyncratic variance component and different correlation coefficients ρi,i (upper lines).
The parameters are θm = 0.08, κm = 2, σm = 0.4, ρi,m = −0.8 for the market component, and
θi = 0.08, κi = 2, and σi = 0.4 for the idiosyncratic component. The initial values V0,i of the
idiosyncratic variance component are equal to 0.5 θi, θi and 1.5 θi. The correlation ρi,i is equal to
0, 0.4, and 0.8, respectively. We consider three cases for the starting value V0,m of the common
component: V0,m = 0.5 θm (upper graph), V0,m = θm (middle graph) and V0,m = 1.5 θm (lower
graph). The interest rate is set to zero.
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Common component: V0,m = 0.5 θm
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Figure 4:
Different Initial Idiosyncratic Volatilities, Different Correlations with
Idiosyncratic Volatility, Different Correlations with Market Volatility

The graphs show the implied volatility smiles as a function of moneyness for the index (lower
solid line) and for a representative set of individual stocks with different starting values for the
idiosyncratic variance component and different correlation coefficients ρi,i and ρi,m (upper lines).
The parameters are θm = 0.08, κm = 2, σm = 0.4, ρi,m = −0.8 for the market component, and
θi = 0.08, κi = 2, and σi = 0.4 for the idiosyncratic component. The initial values V0,i of the
idiosyncratic variance component are equal to 0.5 θi, θi and 1.5 θi. The correlation ρi,i is equal to
0, 0.4, and 0.8, respectively, while ρi,m is either 0, −0.4, or −0.8. We consider three cases for the
starting value V0,m of the common component: V0,m = 0.5 θm (upper graph), V0,m = θm (middle
graph) and V0,m = 1.5 θm (lower graph). The interest rate is set to zero.
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