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Abstract

Relax certificates are written on multiple underlying stocks. The payoff depends on a
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1 Introduction

Recently, more and more structured products written on several instead of one underlying

are issued. Amongst them are so–called relax certificates which can be interpreted as a

generalized version of bonus certificates. While four issuers started to offer these products

in 2006, more than 13 issuers are listed today.1

Normally, relax certificates2 are written on three stocks belonging to a similar market

segment like blue chips or primary products. They are also traded on indices. The payoff

depends on whether and when any of the underlyings reaches a lower barrier. So long as

the barrier is not reached, the payments of the portfolio correspond to those of a coupon

bond where the coupon payments usually range from 6% to 16%.3 However, if the lower

barrier is hit, all future payments from the bond component are canceled. Instead, the

investor receives a minimum option on the underlyings. Relax certificates thus combine a

knock-out component (the bond) and a knock-in component (the minimum option). The

time to maturity is usually smaller than thhat of ordinary bonus certificates. A typical

choice are e.g. three years and three month with reference dates every 13 months or a

maturity of about one year with a single reference date at maturity.

Relax certificates are advertised as follows: The bonus payments are appealing even in

sideways moving and moderately bearish markets. The risk of loosing the bonus payments

is low since this event is triggered by a significant loss in one of the underlying stocks.

However, relax certificates are less attractive in highly bullish and highly bearish markets.

In the first case, the investor would have been better off with a direct investment in the

stocks. With relax certificates, she forgoes the participation in increasing stock prices.4 In

1These data has been taken from the monthly reports of the EUWAX and the monthly statistics of

the DDI.
2Similar products are also called Top-10-Anleihe, Easy Relax Express, Easy Relax Bonus, Multi-

Capped Bonus or Aktienrelax. Furthermore, there are also relax certificates which bear some features of

express certificates.
3Some examples for contracts which are traded in the market will be given in Section 5.
4There are also certificates where the investor can participate in the development of the underlying

assets if the terminal value of worst performing stock is larger than the face value of the coupon bond.
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extremely bearish markets, the investor is also worse off. Here, she has to participate in

the (highest) losses at the stock market. This contradicts the naming ’relax’.

In this paper, we provide a detailed analysis of relax certificates. In particular, we

analyze the pricing, upper price bounds, and risk management. Related literature includes

Wallmeier and Diethelm (2008) and Lindauer and Seiz (2008). They analyze (multi)

barrier reverse convertibles which are traded in Switzerland and are similar to the German

relax certificates. Lindauer and Seiz (2008) rely on Monte Carlo simulations to price these

contracts in a standard Black-Scholes framework with correlated assets. Wallmeier and

Diethelm (2008) extend a multinomial tree introduced by Chen, Chung, and Yang (2002)

to value barrier reverse convertibles on three underlyings. In contrast, our main focus is

on closed-form or semi-closed form solutions.

Recall that relax certificates can be interpreted as a knock-out coupon bond and a

knock-in minimum option. In the literature, there is an extensive analysis of barrier op-

tions. Without claiming completeness, closed-form solutions for standard barrier options

are given by Rubinstein and Reiner (1991), Rich (1994) and Haug (1998). More exotic

barrier options are, for example, considered in Kunitomo and Ikeda (1992) (two-sided bar-

riers) and Heynen and Kat (1994a,b) (external barriers). For multi-asset barrier options,

we refer to Wong and Kwok (2003) and Kwok, Wu, and Yu (1998). Closed-form solutions

for pricing options on the minimum or maximum of two risky assets are firstly introduced

in Stulz (1982). An extension to more than two risky assets is given by Johnson (1987).

The probability that at least one underlying reaches the barrier is important for

pricing and risk management. In the simple case of one underlying asset, the distribution

of the first hitting time is well known in a Black-Scholes setup, cf. for example Merton

(1973). It can be calculated using the reflection principle, firstly introduced by Rich (1994),

or the method of images. For two underlyings, a semi–closed form solution is given in

He, Keirstead, and Rebholz (1998) where the distribution function is approximated by

using an infinite Bessel function. Based on a more general work of Rebholz (1994), Zhou

(2001) applies these results to credit risk modeling where similar problems occur. This

was extended by Overbeck and Schmidt (2005) who use a deterministic time change for
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each Brownian motion. The first hitting time distribution of more than two underlyings,

however, cannot be given in closed form for a general correlation structure.

Our main findings are as follows. The decomposition into a knock-out coupon bond

and a knock-in minimum option is useful to understand the market convention. The

contracts are designed such that relax certificates can be offered at a discount of the

associated coupon bond. Formally, this gives a condition on admissible (or attractive)

contract parameters in terms of the barrier and coupon payments. Basically, this condition

is met if there is a lower bound on the coupon rate and/or an upper bound on the barrier

level. In this case, a trivial upper price bound is given by the corresponding coupon

bond. This price bound can be tightened by subtracting the price of a put option on the

minimum of the underlyings with a strike price equal to the barrier.

In addition, we show that price bounds can be determined by considering subsets of

the underlyings. In the extreme case where the number of underlyings is reduced to one,

the upper price bound can be calculated in closed–form in a Black-Scholes setup. This

price bound is decreasing in the volatility of the underlying. In particular, this implies

that the lowest upper price bound is given by using the stock with the highest volatility as

underlying. Due to the drawbacks of the extreme case of one–underlying which obviously

contradicts the basic idea of multiple underlyings, we extensively study higher dimensions.

We show that tight but still tractable price bounds result from considering all subsets

consisting of two underlyings.

In order to test the practical relevance of our theoretical results, we analyze relax

certificates which are currently traded at the market. For typical contract specifications,

the price of relax certificates on two or three underlyings is up to 10% lower than the price

of the corresponding coupon bond. The risk that at least one of the underlying stocks

hits the lower barrier can thus not be neglected and is highly economically significant.

We also compare the market prices to the upper price bounds which are based on two

underlyings only. It turns out that the market prices are well above these upper price

bounds, which confirms that these contracts are overpriced (at least relative to the model

of Black-Scholes) and which also shows that the upper price bounds are rather tight.
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The remainder of the paper is organized as follows. In Section 2, the payoff structure

of relax certificates is defined and analyzed. In addition, we focus on conditions on the con-

tract parameters which are implied by the contract design. This allows us to derive model

independent upper price bounds. In Section 3, we assume a Black–Scholes model and give

a representation of (exact) prices as well as (model-dependent) upper price bounds. In

particular, we give a tight upper price bound in semi–closed form. The dependence of the

prices and price bounds on the characteristics of the underlyings is discussed in Section

4. A comparison to market prices can be found in Section 5. Section 6 concludes.

2 Product Specification and Model Independent Price

Bounds

2.1 Product Specification

In general, a relax certificate is written on n underlying stocks, where n is equal to 2 or 3

for currently traded relax certificates. Let S
(j)
t be the price of stock j at time t. For ease of

exposition, we set the initial value of all stocks equal to one, i.e. S
(j)
0 = 1 (j = 1, . . . , n). 5

The payoff of the relax certificate depends on whether at least one of the stocks has

hit its lower barrier m (m < 1), i.e. has lost the fraction 1 −m of its value. Usually, m

is chosen to be quite low, e.g. m = 0.5, so that this event constitutes a significant loss

of this stock. The first hitting time of stock j (j = 1, . . . , n) with respect to the barrier

level m is denoted by τm,j. The first hitting time of the portfolio of all underlying stocks

is denoted τm, i.e.

τm,j := inf
{

t ≥ 0, S
(j)
t ≤ m

}
, (1)

τ (n)
m := min{τm,1, ...τm,n}. (2)

If none of the underlyings reaches the level m, τ
(n)
m is set to τ

(n)
m = ∞.

5This is in line with currently traded relax certificates where the minimum option is written on the

return of the underlying stocks in tN .
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The relax certificate can be decomposed into two parts, a knock-out (RO) and a knock-

in (RI) component. Its total payoff at maturity tN is RC
(n)
tN

= RO
(n)
tN

+ RI
(n)
tN

, where we

assume that payments before maturity are accumulated at the continuously compounded

risk-free rate r.6 The set of all payment dates is denoted by T = {t1, . . . , tN}´, the current

point in time is t0 < ti. If the barrier has not been hit until ti ∈ T (i = 1, ..., N), the

investor receives a bonus payment which can be interpreted as a coupon payment with

coupon rate δ. At maturity tN , she also receives the nominal value of the certificate which

we normalize to one. This part of the payoff can be interpreted as a knock-out component

RO
(n)
tN

RO
(n)
tN

=
N∑

i=1

δer(tN−ti)
(
1− 1{τ (n)

m ≤ti}

)
+

(
1− 1{τ (n)

m ≤tN}

)
(3)

where 1 is an indicator function. If the barrier is hit before tN , the investor forgoes all

future bonus payments as well as the repayment of the nominal value. Instead, she gets

an option on the minimum of the n underlying stocks with maturity in tN . The payoff

from this knock-in component RI
(n)
tN

at time tN is given by

RI
(n)
tN

= min{S(1)
tN

, ..., S
(n)
tN
}1{τ (n)

m ≤tN}. (4)

We summarize the payoff from the relax certificate in the following definition:

Definition 1 (Relax certificate) The compounded payoff of a relax certificate with nom-

inal value 1, coupon rate δ, lower boundary m, payment dates T = {t1, . . . , tN}, and n

underlying stocks S(1), ..., S(n) is

RC
(n)
tN

=
N∑

i=1

δer(tN−ti)
(
1− 1{τ (n)

m ≤ti}

)
+

(
1− 1{τ (n)

m ≤tN}

)

+ min
{

S
(1)
tN

, ..., S
(n)
tN

}
1{τ (n)

m ≤tN}. (5)

2.2 Model Independent Price Bounds

Relax certificates are advertised by a rather high coupon rate and a price below the price

of the corresponding coupon bond. We call these relax certificates attractive:

6Throughout the paper we assume that r is constant.
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Definition 2 (Attractive relax certificate) A relax certificate is called attractive iff

δ > r and RC
(n)
t0 <

N∑
i=1

δe−r(ti−t0) + e−r(tN−t0). (6)

The discount as compared to the price of a coupon bond is achieved by the knock-out

feature of the bond component. However, note that in case of a knock-out, the payoff is

not replaced by zero but by the payoff of a minimum option. For the relax certificate to

be attractive, the investor has to switch from a “higher” to a “lower” payoff in this case,

i.e. the foregone future bond payments must be worth less than the minimum option. A

condition to ensure that this is indeed the case is given in the following lemma:

Lemma 1 (Upper price bound: coupon bond) A sufficient condition on the con-

tract parameters (δ,m) to ensure RC
(n)
t0 <

∑N
i=1 δe−r(ti−t0) + e−r(tN−t0) is given by

m ≤ min
{j=0,...,n}

δ
∑

i:ti>tj

e−r(ti−tj) + e−r(tN−tj). (7)

In particular, a sufficient condition for Equation (7) is given by

m ≤ (1 + δ)e−rtN

1 + e−rtN
. (8)

Proof: If the barrier is not hit, the payoffs are equal to that of a coupon bond. If the

barrier is hit at time τ , the investor forgoes the future payments from this bond and

receives a minimum option instead. The value of this minimum option is bounded from

above by the lowest stock price at time τ , which is equal to m.7 Condition (7) ensures

that immediately after a coupon payment, the value of the coupon bond is larger than

the upper price bound of the minimum option. In between the coupon dates, the price

of the coupon bond increases and is thus also larger than m. To derive Equation (8), we

start from the right hand side of the inequality:

min
{j=0,...,n}

δ
∑

i:ti>tj

e−r(ti−tj) + e−r(tN−tj) ≥ δe−r(tN−t0) + e−r(tN−t0)

≥ (1 + δ)e−r(tN−t0)

1 + e−r(tN−t0)

7To be more precise, in the case of gap risk due to jump or liquidity risk the lowest stock price can be

lower than m.
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If m is smaller than the last line, then Equation (7) holds. ¤

Obviously, an upper price bound for an attractive relax certificate is given by the

price of the corresponding coupon bond. The trivial superhedge can easily be tightened

by selling some put options, which makes the price bound model dependent.8

Proposition 1 (Semi-Static Superhedge) Assume that the tupel (δ,m) satisfies Equa-

tion (8). Then, the following semi-static strategy is a superhedge for the relax certificate:

At t0, buy the corresponding coupon bond (with coupon δ and payment dates T ) and sell

a minimum put-option with underlyings S = (S(1), ..., S(n)), maturity tN and strike m.

At time τ
(n)
m < tN , sell the coupon bond, buy back the minimum put-option, and buy the

cheapest underlying asset.

Proof: Consider the case τ
(n)
m < tN first. At τ

(n)
m , the value of the hedge portfolio is

CB
τ
(n)
m
− PMin

τ
(n)
m

≥ e−r(tN−τ
(n)
m )(1 + δ)− PMin

τ
(n)
m

,

where CB denotes the value of the coupon bond. The payoff of the minimum put-option

at tN is bounded by

PMin
tN

=
[
m−min{S(1)

tN
, ..., S

(n)
tN
}
]+

≤ m

so that at τ
(n)
m < tN we have PMin

τ
(n)
m

≤ e−r(tN−τ
(n)
m )m. With condition (8), it follows that

CB
τ
(n)
m
− PMin

τ
(n)
m

≥ e−r(tN−τ
(n)
m )(1 + δ)− e−r(tN−τ

(n)
m )m

= e−r(tN−τ
(n)
m )(1 + δ −m)

≥ m.

Therefore, the value of the hedge portfolio is large enough to buy the cheapest asset,

which is worth m at τ
(n)
m . Obviously, this asset superhedges the minimum option. Finally,

for τ
(n)
m ≥ tN we have CBtN − PMin

tN
= CBtN . ¤

Corollary 1 (Upper Bound on RC
(n)
t0 ) For an attractive relax certificate, it holds that

RC
(n)
t0 ≤

N∑
i=1

δe−r(ti−t0) + e−r(tN−t0) − PMin
t0

(S
(1)
tN

, ..., S
(n)
tN

). (9)

8The semi-static superhedge is model independent excluding gap risk due to jump or liquidity risk.
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Proof: The proof follows immediately with Proposition 1. ¤

The semi–static superhedge in Proposition 1 can be simplified by considering only a

subset of underlyings, as will be shown in Section 3.2. Reducing the number of underlyings

to one leads to a semi-static hedge where only one plain-vanilla put option instead of the

more exotic minimum option is needed. The optimal choice which gives the lowest initial

capital is then the most expensive put, where the high price can be due to a low stock

price and/or a high volatility.

An issuer who sells the relax certificate as a substitute for selling a coupon bond

might follow yet another hedging strategy. So long as the barrier is not hit, he might just

refrain from hedging at all. If the barrier is hit, however, she is no longer short a coupon

bond but short a minimum option. At this point in time, she might hedge her exposure

to stock price risk by taking a long position in the worst performing stock, thus ”paying

back” the bond before its maturity date.

3 Pricing and upper price bounds

For the following analysis, we assume a Black–Scholes–type model setup. Each stock price

S
(j)
t satisfies the stochastic differential equation

dS
(j)
t = µjS

(j)
t dt + σjS

(j)
t dW

(j)
t (10)

where {W (j)
t }0≤t≤T is a standard Brownian motion under the real world measure P . The

Wiener processes are in general correlated, i.e. for i 6= j it holds that 〈W (i), W (j)〉t = ρijt.

In particular, we assume constant correlations. Note that Equation (10) implies that the

dynamics of the stock prices under the risk neutral measure Q are

dS
(j)
t = rS

(j)
t dt + σjS

(j)
t dW

Q,(j)
t (11)

where {WQ,(j)}0≤t≤T is a standard Brownian motion under the equivalent martingale

measure Q. The change of measure is given by
(

∂Q(j)

∂P

)

t

= exp

{
−µ(j) − r

σj

W
(j)
t − 0.5

(
µ(j) − r

σj

)2

t

}
.
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3.1 Prices of Relax Certificates

Let RC
(n)
t0 denote the price at t0 of the relax certificate which is written on n underlying

assets S(1), . . . , S(n). Pricing by no arbitrage immediately gives

Proposition 2 (Price of a relax certificate) The t0–price of a relax certificate with

coupon payments δ, payment dates T = {t1, . . . , tN} and n underlying assets is given by

RC
(n)
t0 = RO

(n)
t0 + RI

(n)
t0 . The prices of the components are

RO
(n)
t0 = δ

N∑
i=1

e−r(ti−t0) Q
(
τ (n)
m > ti

∣∣ Ft0

)
+ e−r(tN−t0) Q

(
τ (n)
m > tN

∣∣ Ft0

)
(12)

RI
(n)
t0 = E

[∫ tN

t0

e−r(u−t0)CMin,n
u dNu

∣∣ Ft0

]
(13)

where Nt := 1{τ (n)
m ≤t} and CMin,n

t := E
[
e−r(tN−t) min

{
S

(1)
tN

, . . . , S
(n)
tN

} ∣∣ Ft

]
.

Proof: Pricing by no arbitrage immediately gives

RC
(n)
t0 = δ

N∑
i=1

e−r(ti−t0) Q
(
τ (n)
m > ti

∣∣ Ft0

)
+ e−r(tN−t0) Q

(
τ (n)
m > tN

∣∣ Ft0

)

+ EQ

[
e−r(tN−t0) min

{
S

(1)
tN

, . . . , S
(n)
tN

}
1{

τ
(n)
m <tN

} ∣∣ Ft0

]
.

Using iterated expectations yields

EQ

[
e−r(tN−t0) min

{
S

(1)
tN

, . . . , S
(n)
tN

}
1{

τ
(n)
m <tN

} ∣∣ Ft0

]

= EQ

[∫ tN

t0

e−r(u−t0)E
[
e−r(tN−u) min

{
S

(1)
tN

, . . . , S
(n)
tN

} ∣∣ Fu

]
1{

τ
(n)
m ∈ du

} ∣∣ Ft0

]

With the definition of Nt, the pricing formula follows. The price of the minimum option

on n assets is given in Appendix C for n = 2 and in Appendix D for general n. ¤

The price of the knock-out bond component in Equation (12) depends on the distribu-

tion of the first hitting time τ
(n)
m , i.e. the first time when one of the stocks hits the barrier.

The price (13) of the knock-in minimum option depends on the joint distribution of the

first hitting time and the stock prices at this first hitting time. In case of one underlying,

the first hitting time distribution is well known and can be derived using the martingale
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stopping theorem as in Harrison (1985) or the reflection principle as in Karatzas and

Shreve (1999). The price of the relax certificate can then be calculated in closed–form:

Proposition 3 (Price of a relax certificate on one underlying)

For n = 1, the price RC
(n=1)
t0 according to Equations (12) and (13) is given in closed form

where the survival probability Q(τ
(n=1)
m ≥ t) needed in Equation (12) is given by:

Q(τ (n=1)
m ≥ t) = N

(
− ln m

S0
+

(
r − 1

2
σ2

)
t

σ
√

t

)
+ e

2
r− 1

2 σ2

σ2 ln m
S0 N

(
ln m

S0
+

(
r − 1

2
σ2

)
t

σ
√

t

)
(14)

The minimum option in Equation (13) reduces to the underlying itself, and the price of

the knock-in minimum option is

RI
(1)
t0 = m

∫ tN

t0

e−r(u−t0)Q
(
τ (n=1)
m ∈ du

∣∣ Ft0

)
(15)

where Q
(
τ

(n=1)
m ∈ du

∣∣ Ft0

)
is given in Appendix A.

Proof: Equation (14) is based on well known results. For the sake of completeness, these

are given in Appendix A. With respect to Equation (15), first note that

CMin,n=1
t = EQ

[
e−r(tN−t) min

{
S

(1)
tN

} ∣∣ Ft

]

= EQ

[
e−r(tN−t)S

(1)
tN

∣∣ Ft

]
= S

(1)
t .

In addition, we know that for τ
(1)
m = u it holds that Su = m. This gives

E

[∫ tN

t0

e−r(u−t0)CMin,n=1
u dNu

∣∣ Ft0

]
= mE

[∫ tN

t0

e−r(u−t0)dNu

∣∣ Ft0

]

= m

∫ tN

t0

e−r(u−t0)Q
(
τ (n=1)
m ∈ du

∣∣ Ft0

)
.

¤

For more than one underlying, closed–form solutions for Equations (12) and (13) do

no longer exist in general. For the special cases of uncorrelated stock prices or perfectly

positively correlated stock prices, the distribution of the first hitting time follows from

the one-dimensional case. For n = 2, Zhou (2001) derives a semi–closed form solution

for the first hitting time by approximating the distribution function using an infinite
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Bessel function. The price of the knock-out bond component can then be calculated in

(semi-) closed form. The price of the knock-in minimum option additionally depends on

the distribution of the stock prices when the barrier is hit, and for n ≥ 2, an analytical

pricing formula no longer exists in the general case.

Thus, even in the case of a simple Black–Scholes–type model setup, the prices of relax

certificates have to be determined numerically. Possible methods are binomial or trinomial

lattices – see e.g. Hull and White (1993) – or finite difference schemes – see e.g. Dewynne

and Wilmott (1994) – which become rather time-consuming for more than one underlying.

In this case, a Monte-Carlo simulation is usually preferred. However, the barrier feature

causes some problems for the simulation. To get the intuition, consider, e.g., a Monte Carlo

simulation with a given refinement of the timeline and a simple Euler discretization of the

stock prices. If one of the stocks breaches the barrier between two discretization dates, this

event might not be detected in the simulation. To control for this problem, a large number

of sampling dates is needed in addition to a large number of simulation path. But still, the

bias decreases very slowly, as shown by Boyle, Broadie, and Glassermann (1997), Boyle

and Lau (1994) or Broadie, Glassermann, and Kou (1997). This problem is well known in

the literature and analyzed by numerous authors suggesting different correction methods,

like a continuity correction as proposed by Broadie, Glassermann, and Kou (1997), or the

use of a (multi-dimensional) Brownian bridge as done by Beaglehole, Dybvig, and Zhou

(1997) for one underlying and by Shevchenko (2003) for several underlyings.

3.2 Upper Price Bounds

Given that the pricing of relax certificates is subject to numerical problems, the question

is whether we can find price bounds that are both easy to calculate and tight. The next

proposition shows that the price of an attractive relax certificate is decreasing in the

number of underlyings. Reducing the number of underlyings thus gives an upper price

bound.
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Proposition 4 (Upper price bound: relax certificates on some underlyings only)

Let S =
(
S(1), . . . , S(n)

)
denote a set of underlyings. In addition, let RCt0( Ŝ ) denote the

price of a relax certificate with coupons δ, payment dates T and underlyings Ŝ where

Ŝ ⊆ S . If condition (7) on the coupon rate δ holds, then

RCt0( S ) ≤ RCt0( S ′) for all S ′ ⊂ S . (16)

In particular, it holds that

RCt0( S ) ≤ min
k,l∈{1,...,n}

RCt0

(
S(k), S(l)

) ≤ min
i∈{1,...,n}

RCt0

(
S(i)

)
. (17)

Proof: Note that τm( S ) ≤ τm( S ′), i.e. the ’big’ certificate is knocked out no later than

the ’small’ one. Depending on when and whether the two certificates are knocked out, there

are three cases. First, if both certificates survive until maturity, their payments coincide.

Second, if both are knocked out at the same point in time, τm( S ) = τm( S ′) ≤ tN , it

holds that

RCτm( S )( S ′) = Cmin
τm( S )( S ′) ≥ Cmin

τm( S )( S ) = RCτm( S )( S ).

Third, if the ’big’ certificate is knocked out while the small one still survives, i.e. if

τm( S ) ≤ tN and τm( S ) < τm( S ′), it holds that

RCτm( S )( S ′) ≥ min



Cmin

τm( S )( S ′),
∑

i:ti>τm( S )

e−r(ti−τm( S ))δ + e−r(tN−τm( S ))





≥ min



Cmin

τm( S )( S ),
∑

i:ti>τm( S )

e−r(ti−τm( S ))δ + e−r(tN−τm( S ))





≥ Cmin
τm( S )( S ) = RCτm( S )( S )

where we have used that the upper bound on the price of the minimum option is lower

than the price of the coupon bond, i.e. that condition (7) holds. In all three cases, the

value of the ’small’ certificate is at least as high as the value of the ’big’ certificate, which

proves the first part of the proposition. The second part then follows as a special case. ¤

For n = 1, this upper bound can be calculated in closed- form. For n = 2, there is a

semi–closed form solution for the knock-out component (12), and we now give an upper

bound for price of the knock-in component (13).
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Proposition 5 (Upper price bound for knock-in part) For every n ≥ 2, an upper

price bound RI
(n)

t0
on the price of the knock-in component is given by

RI
(n)

t0
≤ m

∫ tN

t0

e−r(u−t0)Q
(
τ (n)
m ∈ du

∣∣ Ft0

)
(18)

In particular, for r ≥ 0 it holds that

RI
(n)
t0 ≤ mQ(τ (n)

m ≤ tn|Ft0).

Proof: By the law of iterated expectiations, it holds that

RI
(n)
t0 = EQ

[
e−r(tN−t0) min{S(1)

tN
, ....S

(n)
tN
}1{τ (n)

m ≤tN}|Ft0

]

= EQ

[
EQ

[
e−r(tN−t0) min{S(1)

tN
, ....S

(n)
tN
}

∣∣ F
τ
(n)
m

]
1{τ (n)

m ≤tN}|Ft0

]

= EQ

[
EQ

[
min{Ŝ(1)

tN
, ....Ŝ

(n)
tN
}

∣∣ F
τ
(n)
m

]
1{τ (n)

m ≤tN}|Ft0

]

where Ŝt := e−r(t−t0)St . Ŝ is a Q-martingale, so that min{Ŝ(1)
tN

, ....Ŝ
(n)
tN
} is a Q-supermartingale.

Together with the Optimal Stopping Theorem it follows that

EQ

[
min{Ŝ(1)

tN
, ....Ŝ

(n)
tN
} ∣∣ F

τ
(n)
m

] ≤ min{Ŝ(1)
τn
m

, ....Ŝ
(n)
τn
m
} = m e−r(τ

(n)
m −t0).

This implies

RI
(n)
t0 ≤ m

∫ tN

t0

e−r(u−t0)Q
(
τ (n)
m ∈ du

∣∣ Ft0

)
.

¤
As a consequence we can state the following Theorem.

Theorem 1 (Semi closed-form upper price bound for n ≥ 2) Let n ≥ 2 and S =

(S(1), ..., Sn) denote the set of underlying assets. An upper price bound RC
(n)

t0
is given by

RC
(n)

t0
= min

k,l∈{1,..,n}

{
mQ (min{τm,k, τm,l} ≤ tN |Ft0)

+ δ

N∑
i=1

e−r(ti−t0)Q (min{τm,k, τm,l} > ti|Ft0)

+ e−r(tN−t0)Q (min{τm,k, τm,l} > tN |Ft0)
}

(19)

13



where

Q (min{τm,k, τm,l} ≤ t− t0|Ft0)

=
2

αt

ea1x1+a2x2+b(t−t0)

∞∑
n=1

sin
nπθ0

α
· e r2

0
2t

∫ α

0

sin
nπθ

α
gn(θ)dθ

a1 =
−α1σl + ρk,lα2σk

(1− ρ2
k,l)σ

2
kσl

a2 =
−α2σk + ρk,lα1σl

(1− ρ2
k,l)σ

2
l σk

d1 = a1σk + a2σlρk,l d2 = a2σl

√
1− ρ2

k,l

x1 = log

[
S

(1)
t0

m

]
x2 = log

[
S

(2)
t0

m

]

α1 = −(r − 0.5σ2
k) α2 = −(r − 0.5σ2

l )

and where

b = α1a1 + αa2 +
1

2
σ2

ka
2
1 + 0.5σ2

l a
2
2 + ρk,lσkσla1a2

gn(θ) =

∫ ∞

0

re−
r2

2t ed1r sin(θ−α)−d2r cos(θ−α)Inπ
α

(
rr0

t− t0

)
dr.

For a detailed specification of α, θ, and r0, we refer to Proposition 7 in Appendix B.

Proof: According to Proposition 4, it holds that

RC
(n)
t0 ≤ min

k,l∈{1,..,n}

{
RCt0(S

(k), S(l))
}

= min
k,l∈{1,..,n}

{
ROt0(S

(k), S(l)) + RIt0(S
(k), S(l))

}
.

The value of the knock-out component follows from Proposition 2, while Proposition 5

gives an upper bound on the value of the knock-in minimum option. Putting the re-

sults together gives Equation (19). The probability Q (min{τm,k, τm,l} ≤ tN) follows from

the results of He, Keirstead, and Rebholz (1998) and Zhou (2001), details are given in

Appendix B. ¤

The upper price bounds in this theorem result from subsets of two underlyings. If

this upper bound is applied to a relax certificate with two underlyings, the knock-out

component is priced exactly, while only the knock-in part is approximated from above.

Since the “main part” of the product is explained by the knock-out part, the price bound

14



will be rather tight in this case. For three or more underlyings, however, the upper price

bounds will be worse, and the question is whether we can derive tighter price bounds.

One possibility is to derive upper and lower bounds for the first-hitting time probabilities

which can be calculated in (semi-) closed form, and then plug these bounds into the pricing

equation (12) for the knock-out coupon bond and into the upper bound in Proposition 5

for the value of the knock-in minimum option. Recall that it is not possible to determine

the hitting time probabilities for n ≥ 3 in (semi-)closed form. Therefore the tightest

bounds for n = 3 which are not based on numerical approximations are achieved by

using:

Lemma 2 (Upper and lower bounds for n=3)

Q(τ (n=3)
m ≤ t) ≤ Q

(
τ (n=3)
m ≤ t

) ≤ Q(τ (n=3)
m ≤ t)

where

Q(τ (n=3)
m ≤ t) = min

{
Q(min {τm,1, τm,2} ≤ t) + Q(τm,3 ≤ t),

Q(min {τm,1, τm,3} ≤ t) + Q(τm,2 ≤ t),

Q(min {τm,2, τm,3} ≤ t) + Q(τm,1 ≤ t)
}

Q(τ (n=3)
m ≤ t) = max

{
Q(min{τm,1, τm,2} ≤ t),

Q(min{τm,1, τm,3} ≤ t), Q(min{τm,2, τm,3} ≤ t)
}
.

Proof: It holds that

Q(τ (n=3)
m ≤ t) = Q(min {τm,1, τm,2, τm,3} ≤ t)

Notice that

{ω|min {τm,1, τm,2, τm,3} ≤ t} = {ω|min {τm,1, τm,2} ≤ t} ∪ {ω|τm,3 ≤ t}

Using

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B)

immediately gives the Lemma. ¤
To derive an upper price bound on a relax certificate, Q(τm > t) is replaced by (1 − Q)

15



while Q(τm ≤ t) is replaced by Q. It is straightforward to show that the resulting upper

price bound is higher than the one in Theorem 1.

4 Sensitivities

We now take a closer look at the prices of relax certificates. In particular, we are interested

in relax certificates on one and two underlyings. Their prices are upper price bounds for

relax certificates on a larger number of underlyings. The first question in this context is

which two underlyings to pick to get the lowest upper price bounds. The second question

is how tight these price bounds are.

We provide a numerical example with respect to the model setup of Section 3. The

time to maturity is 3 years, and there are two intermediate payment dates, t1 = 1 and

t2 = 2. The bonus level is δ = 0.11, and the barrier is set to m = 0.5. The relax certificate is

written on two stocks with identical volatilities and a return correlation of ρ. The prices are

calculated using a Monte-Carlo simulation with 10.000 simulation runs. To minimize the

risk that we miss a hit of the barrier which happens in between to successive discretization

dates, we use 100 time steps per day.

In line with market practice, we restrict the analysis to attractive relax certificates,

cf. Definition 2. For these contracts, the corresponding coupon bond is more valuable than

the minimum option when the barrier is hit. Intuitively, the value of the relax certificate

is then the lower the higher the probability that the barrier will be hit. Its price will thus

decrease both in the volatility of the underlyings and in the barrier level, while it will

increase in the correlation of the two assets.

This intuition is confirmed by our numerical analysis. The upper left graph in Figure

1 shows the price of a relax certificate on two underlyings as a function of volatility and for

different values of the correlation between the two assets. Furthermore, the graph shows

that the impact of correlation is of the same order as the impact of the volatilities, so that

a significant decrease in correlation can have a similar impact on the price as an increase

in the volatility. If the correlation of the assets differs from one, the upper price bound
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based on two underlyings will thus be significantly lower than the upper price bound

based on one underlying only (where the latter is equal to the price for a correlation of

one).

The upper right graph shows the survival probability, i.e. the probability that the

barrier will not be hit until maturity. In line with intuition, this probability is decreasing

in the volatilities of the underlyings and increasing in their correlation. The lower two

graphs show the value of the knock-out coupon bond and the knock-in minimum option.

While the price of the knock-out bond is rather similar to the survival probability, the price

of the knock-in minimum option behaves the other way round. The higher the volatility

and the lower the correlation, the higher the contribution of the minimum option to the

overall price of the relax certificate, and the less similar the certificate is to a standard

coupon bond.

5 Market Comparison

5.1 Contract Specifications

We now analyze relax certificates currently traded at the market and compare their issue

prices to our price bounds. Table 1 gives the contract specifications of six typical certifi-

cates. The underlyings and their implied volatilities can be found in Table 2. All barriers

are set at a rather low value (50% or 60%), so that at least one of the underlying stocks

has to loose a rather high fraction of its initial value for the coupon bond to be replaced

by the minimum option. Furthermore, the bonus rate is rather high, and all certificates

are attractive.

The relax certificate Z1, issued by Commerzbank, is written on two stocks, namely

Siemens and Daimler. The time to maturity is 14 month, and there are no intermediate

payment dates. If both stocks do never fall below 50% of their initial value, the payoff from

the bonus certificate is 111 Euros. In principle, the high bonus payment (as compared to

the current risk-free rate) should just compensate the investor for the risk that the lower
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Z Issue Price n tN δ m Bonus payments {ri}i=1,..

incl. load ti

Z1 101.00 2 14 months 0.11 50% at maturity 0.0505

Z2 101.00 3 17 month 4 days 0.16 50% at maturity 0.0505

Z3 101.00 3 3 years 3 months 0.10 50% every 13 months 0.0505, 0.0484, 0.0472

Z4 101.00 3 15 month 2 days 0.19 60% at maturity 0.0505

Z4 101.00 3 3 years 0.30 50% at maturity 0.0472

Z6 1000.00 3 20 months 0.20 60% at maturity 0.0484

Table 1: Summary of traded product specifications and interest rates

barrier is hit, in which case he receives the worst of the two stocks at maturity.

The relax certificate Z2, issued by HSBC Trinkaus, is additionally written on EON.

It has both a longer time to maturity and a higher bonus payment, but the same initial

price as Z1. Theoretically, the higher bonus payment is thus set in such a way as to

exactly offset the lower value resulting from the longer time to maturity. The third relax

certificate, Z3, is issued by HVB. It is written on three stocks, namely Allianz, BASF and

Deutsche Post. Different from before, there are now to intermediate payment dates after

13 and 26 months.

In contrast to the certificates presented so far, Z4 – Z6 contain an additional com-

ponent. The contracts also include a knock-out minimum call option on the underlyings

with a strike price equal to the terminal payoff from the bond component. The investor

thus participates in the stock market if all stocks perform well. Both Z4 and Z5 are issued

by Société General. Z4 is written on three banks, namely Deutsche Bank, Commerzbank

and Postbank, whereas Z5 is written on Allianz, Deutsche Telekom and DaimlerChrysler.

Z6 is launched by WestLB with underlyings Allianz, Bayer and RWE.

18



Z Underlyings Implied Z Underlyings Implied

Volatilitiy Volatility

Z1 Daimler AG 0.33 Z4 Deutsche Bank 0.34

Siemens AG 0.35 Commerzbank 0.42

Postbank 0.46

Z2 Daimler AG 0.33 Z5 Allianz 0.32

Siemens AG 0.35 Deutsche Telekom 0.25

EON 0.27 Daimler AG 0.33

Z3 Allianz 0.32 Z6 Allianz 0.32

BASF 0.25 Bayer 0.32

Deutsche Post 0.30 RWE 0.24

Table 2: Underlyings of the certificates and implied volatilities of the underlyings

5.2 Survival Probabilities and Price Bounds

Proposition 1 states that the coupon bond is a trivial upper price bound for an attractive

relax certificate. The interest rates are inferred from the corresponding zero coupons

(swaps) via bootstrapping and are given in the last column of Table 1. The resulting

prices of the coupon bonds are given in Table 3. For all certificates, the issue price is

significantly lower than the price of the corresponding coupon bond. The risk that at

least one stock looses more than 50% respectively 40% of the initial value should thus not

be neglected, and it reduces the price by 4% to 11%.

To assess the risk inherent in the relax certificate, we calculate the probability that the

barrier will be hit by one or two underlyings, where we set ρk,l = 0.3 and σk = σl = 0.3.9

The results show that adding a further underlying significantly increases the risk that the

bond will be knocked out. They also confirm that the risk of a knock-out is rather high,

even if we only calculate a lower bound for this knock-out probability in case n = 3.

In the next step, we use Theorem 1 to determine the upper price bounds. Table 3

9For all certificates, the implied volatilities of at least two underlyings as given in Table 2 are above

30%, so that a volatility of σ = 0.3 yields a lower boundary.
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Z n Issue Price corresp. Survival probability Upper price bound

incl. load coupon one two Knock-out Knock-in Price

bond underlying underlyings component component

Z1 2 101.00 104,65 96,88% 93,60% 97,32 3,20 100,52

Z2 3 101.00 107,99 94,97% 89,90% 96,11 5,25 101,36

Z3 3 101.00 112,83 80,76% 65,99% 75,19 17,05 92,24

Z4 3 101.00 111,72 87,58% 77,19% 86,24 13,69 99,93

Z5 3 101.00 112,83 82,47% 68,67% 77,48 15,69 93,17

Z6 3 1000.00 1107,37 81,18% 67,85% 751,10 192,90 944,00

Table 3: Relax certificates traded at the market

The table gives the price of the corresponding coupon bond, the survival prob-

abilities based on one and two underlyings, and the upper price bounds based

on two underlyings. The calculations are based on a volatility of σ = 0.3 and

a correlation of ρ = 0.3.

gives the upper price bounds, again based on ρk,l = 0.3 and σk = σl = 0.3. Note that for

all certificates, the price of the knock-out coupon bond by far exceeds the upper bound on

the value of the knock-in minimum option. Furthermore, the resulting upper price bound

is below the issue price for all but one certificates. If we included dividend payments on the

stocks – which we have ignored up to now – the upper price bound would even decrease

further. For Z1 and Z2, we also recalculated the upper price bounds using the implied

volatilities of the underlyings and varying the correlation from −1 to 1. The price bounds

are shown in Figure 2. For Z2, the issue price now exceeds the upper price bound for all

correlation levels. For Z1, the issue price is below the upper bound only if we assume a

correlation larger than 0.85.

There are two possible conclusions. First, we may conclude that relax certificates

are overpriced in the market. This is in line with the empirical results of Wallmeier and

Diethelm (2008) for the swiss certificate market. Furthermore, the mispricing is the higher

the higher the bonus payments (and thus also the higher the discount due to the knock-out

feature of the bond). We conjecture that the investors do not correctly estimate the risk

20



associated with the barrier feature, but overweight the sure coupon. Second, the model of

Black-Scholes may not be the appropriate choice, but we may have to use a model with

stochastic volatility, jumps, and maybe also a stochastic correlation between the assets

instead. This is left to future research.

6 Conclusion

Relax certificates can be decomposed into a knock-out coupon bond and a knock-in min-

imum option on all underlying stocks. The contracts are designed such that relax certifi-

cates can be offered at a discount compared to the associated coupon bond. Formally, this

gives a condition on admissible (or attractive) contract parameters in terms of the barrier

and coupon payments.

The knock-out/knock-in event takes place when the worst-performing of the n un-

derlying stocks hits a lower barrier, which is usually quite low. Nevertheless, our analysis

shows that the probability of a knock-out can not be neglected and induces a significant

price discount of the relax certificate as compared to the corresponding coupon bond. The

risk is the larger the higher the volatility of the underlyings, the lower their correlation,

and the larger the number of stocks the certificate is written on.

In general, numerical methods are needed to price relax certificates, and even in the

Black-Scholes model, closed form solutions exist for one underlying only. However, closed-

form or semi-closed form solutions are available for upper price bounds. A trivial upper

price bound is given by the corresponding coupon bond. Furthermore, the price of a relax

certificate on several underlyings is bounded from above by the price of the (cheapest)

relax certificate on a subset of underlyings. We show that two underlyings are convenient

to achieve meaningful and tractable price bounds. The most likely candidates to give this

lowest upper price bound are the relax certificates on the most risky assets and/or the

assets with the lowest correlation between the underlyings.

Finally, we test the practical relevance of our theoretical results by comparing the

price bounds with market data. The upper price bounds are calculated based on the
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implied volatilities of call options on the respective underlyings. It turns out that the

relax certificates which are currently traded at the market are significantly overpriced.

This result is true for all correlation scenarios.
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A First Hitting Time - One-Dimensional Case

To derive the distribution of the first hitting time in the one-dimensional case, we use some

results given in He, Keirstead, and Rebholz (1998). They consider the probability density

and distribution function of the maximum or minimum of a one-dimensional Brownian

motion with drift.

Along the lines of He, Keirstead, and Rebholz (1998), we define

X t := min
0≤S≤t

Xs X t := max
0≤S≤t

Xs

where Xt = αt+σWt, t ≥ 0 and α, σ are constants, and W is a Brownian motion defined

on some probability space.

Proposition 6 Define the functions G(x, t; α) and g(y, x, t; α1) by

G(x, t; α) = N

(
x− αt

σ
√

t

)
− e

2αx
σ2 N

(−x− αt

σ
√

t

)

g(y, x, t; α1) =
1

σ
√

t
φ
(x− α1t

σ
√

t

) (
1− e−

4x2−4x4y

2σ2t

)

where N denotes the cumulative distribution function of the standard normal distribution

and φ(z) the density of the standard normal distribution.

For x ≥ 0, it holds that

P (X t ≤ x) = G(x, t; α) P (X1(t) ∈ dy, X1(t) ≤ x) = g(y, x, t; α1)dy.

For x < 0, it holds that

P (X t ≥ x) = G(−x, t;−α) P (X1(t) ∈ dy, X1(t) ≥ x) = g(−y,−x, t;−α1)dy.

PROOF: c.f. He, Keirstead, and Rebholz (1998), Theorem 1, and its proof.

Corollary 2 For constant µ and σ, set

St = S0e
(µ− 1

2
σ2)t+σWt
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where W is a Brownian motion defined on some probability space. For the first hitting

time of m < S0, τm := inf{t ≥ 0|St ≤ m}, it holds that

P (τm ≤ t) = N

(
ln m

S0
− (

µ− 1
2
σ2

)
t

σ
√

t

)
+ e

2
µ− 1

2 σ2

σ2 ln m
S0 N

(
ln m

S0
+

(
µ− 1

2
σ2

)
t

σ
√

t

)

P (τ (n=1)
m ∈ dt) =

− ln m
S0√

2πσ2t3
e−

1
2

(ln m
S0
−(µ− 1

2 σ2)t)
2

σ2t dt.

Proof: It holds that

τm : = inf
{

t ≥ 0|St ≤ m
}

= inf
{

t ≥ 0| ln St

S0

≤ ln
m

S0

}
.

Let Xt denote the logarithm of the normalized asset price, i.e.

Xt := ln
St

S0

=

(
µ− 1

2
σ2

)
t + σWt

and set α = µ − 1
2
σ2. The stopping time τm is related to the first hitting time of a

one-dimensional Brownian motion with drift α. With x := ln m
S0

< 0 it holds that

P (τm ≤ t) = P (X t ≤ x) = 1− P (X t ≥ x).

According to Proposition 7, we have

1− P (X t ≥ x) = 1−G(−x, t;−α)

= 1−N

(−x + αt

σ
√

t

)
+ e

2αx
σ2 N

(
x + αt

σ
√

t

)

= N

(
x− αt

σ
√

t

)
+ e

2αx
σ2 N

(
x + αt

σ
√

t

)
.

Plugging in α and x gives the distribution function.To derive the density function, define

f(t) := N

(
x− αt

σ
√

t

)
+ e

2αx
σ2 N

(
x + αt

σ
√

t

)
.

Taking partial derivatives gives

f ′(t) = N ′
(

x− αt

σ
√

t

)
×

(−ασ
√

t− σ
2
√

t
(x− αt)

σ2t

)

+ e
2αx
σ2 ×N ′

(
x + αt

σ
√

t

)
×

(
ασ
√

t− σ
2
√

t
(x + αt)

σ2t

)
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Using N ′(x) = 1√
2π

e−
1
2
x2

, we get

e
2αx
σ2 N ′

(
x + αt

σ
√

t

)
=

1√
2π

e
2αx
σ2 − 1

2

(
x+αt
σ
√

t

)2

=
1√
2π

e
1

σ2 [2αx− 1
2t

(x+αt)2]

=
1√
2π

e−
1
2

(x−αt)2

σ2t

= N ′
(

x− αt

σ
√

t

)
.

Plugging this into the equation for f ′(t) gives

f ′(t) = N ′
(

x− αt

σ
√

t

)
× −σx√

tσ2t
(x− αt + x + αt)

=
−x√
2πσ2t3

e−
1
2

(x−αt)2

σ2t .

Using α = µ− 1
2
σ2 and x = ln m

S0
, which implies ∂x

∂m
= S0

m
, gives the result. ¤

B First Hitting Time – Two Dimensional Case

The distribution of the first hitting time in the two-dimensional case is based on He,

Keirstead, and Rebholz (1998) and Zhou (2001):

Proposition 7 Let X
(j)
t = αjt+σjW

(j)
t , t ≥ 0, j = 1, 2, where αj = −(µj− 1

2
σ2

j , µj and σj

are constants, and W (1), W (2) are two correlated Brownian motions with
〈
W (1), W (2)

〉
t
=

ρt. Then, the probability that X(1) and X(j) will not hit the upper boundaries x(1) > 0 and

x(2) > 0 up to time t is

P
(
X̄

(1)
t ≤ x(1), X̄

(2)
t ≤ x(2)

)
=

2

αt

ea1x1+a2x2+bt

∞∑
n=1

sin
nπθ0

α
· e r2

0
2t

∫ α

0

sin
nπθ

α
gn(θ)dθ

where

f(r, θ, t) =
2

σ1σ2

√
1− ρ2αt

ea1x1+a2x2+bte−
r2+r2

0
2t

∞∑
n=1

sin
nπθ

α
sin

nπθ0

α
Inπ

α

(r0r

t

)
.
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The parameters are defined by

a1 =
−α1σ2 + ρα2σ1

(1− ρ2)σ2
1σ2

a2 =
−α2σ1 + ρα1σ2

(1− ρ2)σ2
2σ1

d1 = a1σ1 + a2σ2ρ d2 = a2σ2

√
1− ρ2

and by

b = α1a1 + αa2 +
1

2
σ2

1a
2
1 + 0.5σ2

2a
2
2 + ρσ1σ2a1a2

α =





tan−1(−
√

1−ρ2

ρ
) if ρ < 0

π + tan−1(−
√

1−ρ2

ρ
) otherwise

θ0 =





tan−1
( x2

σ2

√
1−ρ2

x1
σ1
−ρ x2

σ2

)
if (.) > 0

π + tan−1
( x2

σ2

√
1−ρ2

x1
σ1
−ρ x2

σ2

)
otherwise

r0 = x2/σ2 sin(θ0).

The function gn is defined as

gn(θ) =

∫ ∞

0

re−
r2

2t ed1r sin(θ−α)−d2r cos(θ−α)Inπ
α

(rr0

t

)
dr.

Proof: Recall that

S
(j)
t = S0e

(r− 1
2
σ2

j )t+σjW
(j)
t

and use that

τ (j)
m := inf{t ≥ 0|S(j)

t ≤ mj}

= inf{t ≥ 0| ln S
(j)
t

S
)j)
0

≤ ln
mj

S
(j)
0

}

= inf{t ≥ 0| − ln
S

(j)
t

S
)j)
0

≥ ln
S

(j)
0

mj

}

For mj < S
(j)
0 , it holds that ln

S
(j)
0

mj
> 0. Let X

(j)
t denote the logarithm of the normalized

asset prices, i.e.

X
(j)
t = − ln

S
(j)
t

S
(j)
0

= −
(

(µj − 1

2
σ2

j )t + σjWt

)
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The stopping time τm is equal to the first hitting time of the positive upper barriers x1

and x2 by the two-dimensional Brownian motion (X(1), X(2)) with drift parameters

α1 = −(µ− 1

2
σ2

1), α2 = −(µ− 1

2
σ2

2)

where the upper barriers are

x1 = ln
S

(1)
0

m
, x2 = ln

S
(2)
0

m

For the rest of the proof, see Zhou (2001).

C Pricing Formula of a Minimum Option based on

two underlyings

The price of the minimum option on two underlying assets with a strike price equal to

zero is given in Stulz (1982):

CMin
t (n = 2) = EQ

[
e−r(tN−t) min

{
S

(1)
tN

, S
(2)
tN

} ∣∣ Ft

]

= S
(1)
t − S

(1)
t N(d1) + S

(2)
t N(d2)

where

d1 =
ln

S
(1)
t

S
(2)
t

+ 1
2
σ̃2(tN − t)

σ̃
√

tN − t
, d2 = d1 − σ̃

√
tN − t, σ̃ =

√
σ2

1 + σ2
2 − 2ρσ1σ2.

Proof: The risk-neutral pricing equation is

EQ

[
e−r(tN−t)

(
S

(1)
tN
−max

{
S

(1)
tN
− S

(2)
tN

, 0
}) ∣∣ Ft

]

The rest of the proof immediately follows from Magrabe (1978), who gives an explicit

formula for the option to exchange one asset for another.
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D Pricing Formula of a Minimum Option based on

several underlyings

To price a minimum option on several underlyings, we rely on the results of Johnson

(1987). Johnson (1987) argues that the price of a minimum option on several assets can

be derived using the ansatz of Magrabe (1987) for pricing exchange options. Taking each

asset as a numeraire, the price of a minimum call option on several assets with strike K

equals:

Cmin = S1Nn(d1(S1, K, σ2
1),−d′1(S1, S2, σ

2
12), ...,

−d′1(S1, SN , σ2
1N),−ρ112,−ρ113, ...,−ρ123, ...)

+S2Nn(d1(S2, K, σ2
1),−d′1(S2, S1, σ

2
12), ...,

−d′1(S2, SN , σ2
2N),−ρ212,−ρ223, ...,−ρ213, ...)

+...

+SNNn(d1(SN , K, σ2
N),−d′1(SN , S1, σ

2
N2), ...,

−d′1(SN , SN−1, σ
2
NN−1),−ρN1N ,−ρN2N , ...,−ρN12, ...)

−Ke−rT Nn(d2(S1, K, σ2
1), d2(S2, K, σ2

2), ...,

d2(SN , K, σ2
N), ρ12, ρ13, ...).

The functions d1, d′1, d2, and d′2 are defined by

d′1(Si, Sj, σ
2
ij) =

log Si

Sj
+ 1

2
σ2

ijT

σij

√
T

, d2(Si, K, σ2
i ) =

log Si

K
+

(
r − 1

2
σ2

i

)
T

σi

√
T

, d1 = d2 + σi

√
T .

The correlation coefficient ρii follows from

Cov
(
log S∗i , log

S∗i
S∗j

)

︸ ︷︷ ︸
σiσijρiij

= V ar(log S∗i )− Cov
(
log S∗i , log S∗j

)
= σ2

i − ρijσiσj

which gives ρiij =
σi−ρijσj

σij
. The correlation coefficient ρijk follows from

Cov
(
log

S∗i
S∗k

, log
S∗i
S∗j

)
= σ2

i − ρijσiσj − ρikσiσk + ρjkσjσk

which gives ρijk =
σ2

i−ρijσiσj−ρikσiσk+ρjkσkσj

σijσik
.

28



References

Beaglehole, D., P. Dybvig, and G. Zhou, 1997, Going to extremes: Correcting Simulation

Bias in Exotic Option Valuation, Financial Analysts Journal January/February, 62–68.

Boyle, P., M. Broadie, and P. Glassermann, 1997, Monte Carlo methods for security

pricing, Journal of Economic Dynamics and Control 21, 1267–1321.

Boyle, P., and S. Lau, 1994, Bumping up against the barrier with the binomial method,

Journal of Derivatives 1, 6–14.

Broadie, M., P. Glassermann, and S. Kou, 1997, A Continuity Correction for Discrete

Barrier Options, Mathematical Finance 7, 325–348.

Chen, R., S. Chung, and T. Yang, 2002, Option pricing in a multi-asset, complete market

economy, Journal of Financial and Qunatitative Analysis 37, 649–666.

Dewynne, J., and P. Wilmott, 1994, Partial to Exotics, Risk December, 53–57.

Harrison, J., 1985, Browian Motion and Stochastic Flow Systems. (Wiley).

Haug, E.G., 1998, The Complete Guide to Option Pricing Formulas. (McGraw-Hill).

He, H., W. P. Keirstead, and J Rebholz, 1998, Double Lookbacks, Mathematical Finance

8, 201–228.

Heynen, R., and H. Kat, 1994a, Crossing Barriers, Risk 7, 46–51.

Heynen, R., and H. Kat, 1994b, Partial Barrier Options, Journal of Financial Engineering

3, 253–274.

Hull, J., and A. White, 1993, Efficient Procedures for Valuing European and American

Path-Dependent Options, Journal of Derivatives Fall, 21–31.

Johnson, H., 1987, Options on the Maximum or Minimum of Several Asset, The Journal

of Financial and Quantitative Analysis 22, 277–283.

29



Karatzas, I., and S.E. Shreve, 1999, Brownian Motion and Stochastic Calculus. (Springer).

Kunitomo, N., and M. Ikeda, 1992, Pricing Options with curved boundaries, Mathematical

Finance 2,4, 275–298.

Kwok, Y., L. Wu, and H. Yu, 1998, Pricing multi-asset options with and external barrier,

International Journal of Theoretical and Applied Finance 1, 523–541.

Lindauer, T., and R. Seiz, 2008, Pricing (Multi-) Barrier Reverse Convertibles, Working

Paper.

Magrabe, W., 1978, The value of an Option to exchange one asset for another, Journal

of Finance 33, 177–186.

Merton, R. C., 1973, Theory of Rational Option Pricing, Bell Journal of Economics and

Management Science 4, 141–183.

Overbeck, L., and W. Schmidt, 2005, Modelling default dependences with threshold mod-

els, Journal of Derivatives 12, 10–19.

Rebholz, J., 1994, Planar diffusions with applications to Mathematical Finance. (Univer-

sity of California).

Rich, D.R., 1994, The Mathematical Foundations of Barrier-Option Pricing Theory, Ad-

vances in Futures and Options Research 7, 267–311.

Rubinstein, M., and E. Reiner, 1991, Breaking Down the Barriers, Risk 4, 28–35.

Shevchenko, P., 2003, Adressing the bias in Monte Carlo pricing of multi-asset options

with multiple barriers through discrete sampling, Journal of Computational Finance 6,

1–20.

Stulz, R., 1982, Options on the Minimum or the Maximum of two risky assets, Journal

of Financial Economics 10, 161–185.

Wallmeier, M., and M. Diethelm, 2008, Market pricing of Exotic Structured Products:

The Case of Multi-Asset Barrier Reverse Convertibles in Switzerland, Working Paper.

30



Wong, H., and Y. Kwok, 2003, Multi-asset barrier options and occupation time derivatives,

Applied Mathematical Finance 10, 245–266.

Zhou, C, 2001, An Analysis of Default Correlations and Multiple Defaults, The Review

of Financial Studies 14,2, 555–576.

31



0.1 0.2 0.3 0.4 0.5
Σ

0.2

0.4

0.6

0.8

1

Price Knock-Out Component

Ρ=-1.00
Ρ=-0.75
Ρ=-0.50
Ρ=-0.25
Ρ=0.00
Ρ=0.25
Ρ=0.50
Ρ=0.75
Ρ=1.00

0.1 0.2 0.3 0.4 0.5
Σ

0.2

0.4

0.6

0.8

1

Price Knock-In Component

Ρ=-1.00
Ρ=-0.75
Ρ=-0.50
Ρ=-0.25
Ρ=0.00
Ρ=0.25
Ρ=0.50
Ρ=0.75
Ρ=1.00

0.1 0.2 0.3 0.4 0.5
Σ

0.2

0.4

0.6

0.8

1

Price Relax Certificate

Ρ=-1.00
Ρ=-0.75
Ρ=-0.50
Ρ=-0.25
Ρ=0.00
Ρ=0.25
Ρ=0.50
Ρ=0.75
Ρ=1.00

0.1 0.2 0.3 0.4 0.5
Σ

0.2

0.4

0.6

0.8

1

Survival Probability

Ρ=-1.00
Ρ=-0.75
Ρ=-0.50
Ρ=-0.25
Ρ=0.00
Ρ=0.25
Ρ=0.50
Ρ=0.75
Ρ=1.00

Figure 1: Relax Certificate on two underlyings

The figure analyzes a relax certificate on two underlyings as a function of the
volatility σ for varying levels of correlation ρ. The upper left graph shows the
price of the relax certificate, the upper right graph gives the survival prob-
ability until the time to maturity. The prices of the knock-out-component
and knock-in-component are shown in the lower left and right graph, respec-
tively. The parameters for the base case are m = 0.5, δ = 0.11, T = {1, 2, 3},
S

(1)
0 = S

(2)
0 = 1 and r = 0.05.
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Figure 2: Upper Price Bound of Z1 and Z2

The figure shows the issue price (solid line) and the upper price bounds for Z1
(dotted line) and Z2 (dashed line) which result from Theorem 1 as a function
of the correlation between the underlyings. The implied volatilities are given
in Table 2.
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