
Robust Recovery Risk Hedging:

Only the First Moment Matters

Credit derivatives are subject to at least two sources of risk: the default time and

the recovery payment. This paper examines the impact of modeling the recovery

payment on hedging strategies in a reduced-form model as well as a Merton-type

model. We show that quadratic hedging approaches do only depend on the expected

recovery payment at default and not the whole shape of the recovery payment

distribution. This justifies assuming a certain recovery payment conditional on the

default time. Hence, this result allows a simplified modeling of credit risk.
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1 Introduction

In contrast to a large amount of theoretical and empirical work available on the val-

uation of credit derivatives (see Bielecki and Rutkowski (2002), Duffie and Singleton

(2003), Lando (2004) for reviews), hedging of credit derivatives remains a largely

unexplored avenue of research. When valuing and hedging credit derivatives, two

quantities are crucial. The first is the probability of default (or default intensity,

if it exists), and the second is the default recovery (or recovery rate) in the event

of default. While in traditional models the recovery rate is given exogenously as a

known constant at the default time, this rate is stochastic in reality, even condi-

tional on the default time. This uncertainty in the default recoveries of both the

underlying instrument (e.g., equity) and particularly the credit derivative (e.g., a

convertible bond) is perhaps the most important reason why hedges in practise are

not self-financing.

The main purpose of this paper is therefore not valuation but hedging credit deriv-

atives in the presence of recovery risk. While in a complete market setting a self-

financing hedging strategy derives immediately, it is still somewhat unclear how to

hedge credit risk if markets are incomplete. Since in general, the common objec-

tive of arbitrageurs in credit derivatives markets is to minimize the variance of the

hedging costs, we focus on the locally risk-minimizing hedging strategy. Föllmer

and Sondermann (1986) pioneered this approach in the special case where the un-

derlying instrument follows a martingale. At each point in time they require that

the risk, defined as the expected quadratic hedging costs, is minimized. However, in

semimartingale models a risk-minimizing strategy does not always exist. Therefore,

Schweizer (1991) introduced a locally risk-minimizing (LRM) hedging strategy and

showed that – under certain assumptions – a strategy is locally risk-minimizing if

the cost process is a martingale which is orthogonal to the martingale part of the

underlying instrument process. The LRM-strategy is mean-self-financing, that is

at each point in time the expected sum of discounted cash infusions or withdrawals

until maturity is zero. The value of the hedge portfolio is then the discounted

expected terminal payoff of the option under the so-called minimal equivalent mar-

tingale measure.

We derive LRM-hedging strategies for a reduced-form model as well a structural

Merton-type model when there are two hedging instruments: a locally riskless

money market account and a risky underlying instrument. The latter model differs

from the original Merton-model by assuming positive bankruptcy costs, given as per-
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centage of the firm value at default. As long as this percentage is a constant, we de-

note the corresponding recovery rate as single-stochastic since the recovery amount

depends only on the default event. Otherwise, that is, if the percentage bankruptcy

costs are random, we call the corresponding recovery rate double-stochastic since

the recovery amount depends not only on the default event but also on the realiza-

tion of another random variable. In this model framework the shares of the firm’s

common stock serve as the underlying instrument. Corresponding model variants

are examined for the reduced-form model framework. In this framework we assume

the existence of a tradable zero coupon bond with total loss at default of the firm

under consideration.

For both model classes it turns out that the corresponding LRM-strategy is not only

mean-self-financing but also self-financing if the modeled default recovery is single-

stochastic. That is, as long as the recovery amount is known in the event of default,

there exists a self-financing replication strategy for credit derivatives. Moreover, we

find that in the more realistic case of double-stochastic default recoveries, the LRM-

hedging strategy does only depend on the expected recovery amount, not on other

characteristics of its distribution. This key result of the paper helps to justify the

frequent simplifying assumption that the default recovery is a constant, conditional

on the default event, when valuing and hedging credit derivatives.

At first glance this result seems to contradict the result of Grünewald and Traut-

mann (1996) when deriving LRM-strategies for stock options in the presence of

jump risk. In that setting the LRM-strategy depends in addition on the variance

of the stock’s jump amplitude, or more precisely, the percentage of the total stock

variance explained by the jump component. This key difference is due to the fact

that in our model default of the firm implies that the underlying instrument’s price

jumps always to zero while in Merton’s (1976) jump diffusion setting assumed by

Grünewald and Trautmann (1996), the option’s underlying stock price jumps to an

arbitrary price level.

The paper is organized as follows: Section 2 describes hedging as a sequential

regression and illustrates the paper’s basic insight. Section 3 looks at locally

risk-minimizing hedging policies in a reduced-form model when recovery is single-

stochastic and double-stochastic, respectively. Section 4 examines locally risk-

minimizing hedging policies in a structural Merton-type model when recovery is

single-stochastic and double-stochastic, respectively. Section 5 concludes the pa-

per. All technical proofs are given in Appendix A.
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2 Hedging by sequential regression

In incomplete financial markets not every contingent claim is replicable. For this

reason a lot of different hedging strategies have been evolved in literature. On one

hand there exist hedging approaches searching self-financing strategies which re-

produce the derivative at the best. On the other hand there are hedging strategies

replicating the derivative exactly at maturity by taking in account additional costs

during the trading period. While the first class of hedging strategies optimizes the

hedging error, to be more precisely the difference between the pay-off of the deriva-

tive FT and the liquidation value of the hedging strategy, the other class minimizes

the hedging costs. In a discrete time set-up Föllmer and Schweizer (1989) developed

a hedging approach of the latter type, the so-called locally risk-minimizing hedging.

When using two hedging instruments, the underlying asset with price process S

and the money market account with price process B, H = (hS,hB) describes the

hedging strategy composed of hS shares in the underlying and hB shares in the

money market account. Vt(H) = hS
t+1St + hB

t+1Bt denotes the liquidation value

of the strategy, Gt(H) =
∑t

i=1(h
S
i ΔSi + hB

i ΔBi) the cumulated gain and finally

Ct(H) = Vt(H)−Gt(H) the cumulated hedging costs at time t. To achieve a locally

risk-minimizing hedging strategy, Föllmer and Schweizer (1989) solve the following

Problem 1 (Locally risk-minimizing hedging in discrete time)

Search the trading strategy H which replicates exactly the derivative F at maturity

T and in addition minimizes the expected quadratic growth of the hedging cost at

every point of time:

EP

[
(ΔCt(H))2 |Ft−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT .

A solution of problem 1 we call locally risk-minimizing hedging strategy or LRM-

hedge1. Föllmer and Schweizer (1989) have pointed out that the above problem 1

is a sequential regression task and can be solved by backwards induction: At first

we determine hS
T and hB

T by identifying the solution of the subproblem

EP

[
(ΔCt(H))2|Ft−1

]
→ min for all hS

t , hB
t given Vt(H) (1)

1A LRM-hedge also solves the problem

EP

[
(ΔCt(H))2 |Ft−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT ,

where ΔCt(H) = ΔCt(H)/Bt denotes the discounted growth of the hedging costs and Bt is the
value of the money market account at time t.
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at time t = T , since VT (H) = FT is specified. Subsequently, we know VT−1(H) and

we can solve the subproblem (1) at t = T − 1 and thus obtain hS
T−1 (as slope of

the regression line) and hB
T−1 (as intercept), and so on. Since ΔCt(H) = Vt(H) −

(hS
t St + hB

t Bt) holds, (1) is a linear regression problem, which can be solved by the

least square principal. Figure 2 illustrates this idea.

In the following, we show that this relation shows directly that two different types

of recovery modeling lead to the same locally risk-minimizing hedge of credit deriv-

atives. The first type of recovery modeling, the so-called single-stochastic recovery

payment, only depends on the default-time and perhaps the development of the

interest rate as illustrated in part (a) of figure 1 for a two period set-up. Thus, the

recovery amount is clearly indicated conditional on the default time (and the term

structure).

The second type of recovery, the so-called double-stochastic recovery, allows in ad-

dition to the default time and the term structure other risk factors influencing the

recovery payment (see part (b) of Fig. 1). For example these additional factors

can characterize the uncertain costs of financial distress or the uncertain time delay

of the promised recovery payment. Thus knowing the default time (and the term

structure) the recovery payment is not unique determined, there exist different re-

alizations of the recovery amount.

Figure 2 shows, that the locally risk-minimizing hedging strategy of the credit

derivative is the same for single- and double-stochastic recovery modeling. Provided,

that the expectation of the double-stochastic recovery payment conditional on the

default time (and the term structure) coincides with the uniquely determined single-

stochastic recovery payment knowing the default time (and the development of the

interest rate).

We provide the proof in the following. More precisely we show, that the single-

stage regression approach (delivers the LRM-hedge of a defaultable claim assuming

double-stochastic recovery) and two-stage procedure (delivers the LRM-hedge of a

defaultable claim assuming single-stochastic recovery which coincides at any default

time with the expectation of the double-stochastic recovery conditional on the de-

fault time) provide the same result. We define the probability pi =
∑

j p(ωj
i ), the

random variables X t(ω
j
i ) = Xt(ω

j
i ) and Vt(H)(ωj

i ), which do not depend on the risk

factor represented by j, by Vt(H)(ωj
i )pi =

∑
k Vt(H)(ωk

i )p(ωk
i ) for all j. Thus, we

obtain

EP [Vt(H)|Ft−1] =
∑
i,k

p(ωk
i )Vt(H)(ωk

i ) =
∑

i

piVt(H)(ωj
i ) = EP [Vt(H)|Ft−1] ,
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(a) Price process when recovery is single-stochastic

F0

F1(u,b)

F1(u,l)

F1(d,b)

F1(d,l)

F2(u,lb) = Z2(u)

F2(u,b) = Z1(u)

F2(u,ll) = F (u)

F2(d,b) = Z1(d)

F2(d,lb) = Z2(d)

F2(d,ll) = F (d)

(b) Price process when recovery is double-stochastic

F0

F1(u,b,1)
...
F1(u,b,m)

...

F1(u,l)

F1(d,b,1)
...
F1(d,b,m)

...

F1(d,l)

F2(u,b,1) = Z1

...
F2(u,b,m) = Zm

...

F2(u,lb,1) = Z1

...
F2(u,lb,m) = Zm

...

F2(u,ll) = F (u)

F2(d,b,1) = Z1

...
F2(d,b,m) = Zm

...

F2(d,lb,1) = Z1

...
F2(d,lb,m) = Zm

...

F2(d,ll) = F (d)

Figure 1: Single-stochastic versus double-stochastic recovery

Part (a) of this figure depicts the price process of a credit derivative with a recovery
payment depending only on the default time (”l” denotes liquidity, ”b” bankruptcy) and
the term structure (”u” denotes an up-tick and ”d” a down-tick of the interest rate).
Conditional on default (and the given term structure) the recovery payment is known.
The latter is not the case if the recovery payment is double-stochastic. Part (b) of the
figure shows that conditional on default (and the given term structure) the recovery
payment can take on m different values Z1, . . ., Zm.
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Discounted Value of

Hedge Portfolio Vt(H)/Bt

Discounted Value

of Underlying Xt

Vt(H)(ωj
1)/Bt

Vt(H)(ω1
1)/Bt

Vt(H)(ω3
1)/Bt

Vt(H)(ω2
1)/Bt

Vt(H)(ω4
1)/Bt

Vt(H)(ω2)/Bt

Xt(ω2)Xt(ω
j
1)

”Insolvent” ”Solvent”

hS
t Xt + hB

t

Figure 2: LRM-strategy when recovery is double-stochastic

If the recovery is double-stochastic, the payment at default does not only depend on
the default time and the term structure but also on another risk factor. We take this
risk factor into account by the superscript j in the state ωj

i . Since the underlying (for
example the stock of the firm or a corporate zero-bond with total loss at default written
on the underlying firm) does not depend on the additional factor, its discounted price
is always zero at default, Xt(ω1

1) = Xt(ω2
1) = . . . = 0. The symbol ” ◦ ” describes a

possible realization of the discounted value of the hedge portfolio. To determine the
LRM-hedge we have to run a regression for the value tupels represented by the ◦-symbol.
Alternatively, we can calculate in a first step the average value of the hedge portfolio
Vt(H)(ω1

1)/Bt = Vt(H)(ω2
1)/Bt = . . ., conditional on the default event occurring. The

latter pairs of values are denoted with the ”•”. In a second step, we identify the regression
line for the points •. The solution of this regression problem coincides with the LRM-
hedge of a defaultable claim assuming no additional risk factor j for the recovery.
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and in an analogous manner EP [(Xt)
2|Ft−1] = EP

[
(Xt)

2|Ft−1

]
, EP [Xt|Ft−1] =

EP [X t|Ft−1], EP [Vt(H)Xt|Ft−1] = EP [XtVt(H)|Ft−1]. From this, it follows, that

the hedge ratio (slope of the regression line) and the shares in the money market

account (ordinate of the regression line) of the one-stage regression approach,

hS
t =

CovP [Vt(H),Xt|Ft−1]

Var[Xt|Ft−1]Bt
and hB

t =
EP [Vt(H)|Ft−1]

Bt
− hS

t EP [Xt|Ft−1] ,

coincide with these of the two-stage procedure:

hS
t =

CovP [Vt(H),Xt|Ft−1]

Var[X t|Ft−1]Bt

and hB
t =

EP [Vt(H)|Ft−1]

Bt
− hS

t EP [X t|Ft−1] .

3 Hedging in reduced-form models

3.1 Model

This section presents a simple intensity model in continuous time which describes a

possible default of a firm at time τ > 0 during the time horizon [0,T ]. Trading takes

place every time t ∈ [0,T ]. The credit event is specified in terms of an exogenous

jump process, the so-called default process Ht = 11{τ≤t}. In the following we assume

that H is an inhomogeneous poisson process stopped at the first jump – the default

time:

P (τ ≤ t) = P (Ht = 1) = 1 − exp

{
−
∫ t

0

λ(s) ds

}
for every t ≥ 0 .

Here P describes the statistical probability measure and λ is a deterministic, non-

negative function of the time with
∫ T

0
λ(t) dt < ∞ representing the default intensity

under P . To simplify the following presentation we assume a deterministic term

structure where the short rate (rt)t∈[0,T ] is only a deterministic function of time.

Bt = exp{
∫ t

0
rs ds} denotes the value of the money market account at time t. X =

(Xt)t∈[0,T ] denotes the discounted price process of the traded risk-free zero coupon

bond with maturity date T and total loss in case of default given by

Xt =
1

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
(1 − Ht)

if financial markets are frictionless and arbitrage-free. The deterministic non-

negative function λ̂ with
∫ T

0
λ̂(t) dt < ∞ can be estimated via market values of
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defaultable financial instruments.2 Since every probability measure Q implying a

default intensity λ̂ fulfills

EQ[Xt|Fs] = 11{τ>s} (Xt · Q(τ > t|τ > s) + 0 · Q(τ ≤ t|τ > s))

= (1 − Hs)
1

BT
exp

{
−
∫ T

t

λ̂(s) ds

}
exp

{
−
∫ t

s

λ̂(s) ds

}
= Xs

for all s ≤ t, the function λ̂ specifies the default intensity under a martingale

measure Q ∈ Q.

Below we will determine hedging strategies for credit derivatives (Z, C, F ). The

defaultable claim delivers time-continuous cash flows Ct in 0 ≤ t ≤ T as long as no

default has occurred. If the firm is still solvent at the time of maturity a payment F

will also be paid. Otherwise the owner of the credit derivative receives (in addition

to the cash flow stream C during the horizon [0,τ)) the uncertain recovery payment

Z(τ) in T . We assume that the recovery amount does not exceed the final value of

the credit derivative’s cash flow when no default accurs :

0 ≤ Z(τ) ≤ BT

∫ T

τ

Ct/Bt dt + F P -a.s. for all 0 < τ ≤ T . (2)

This assumption assures that the value of the defaultable claim (Z, C, F ) is lower

than the value of a default-free, but otherwise identical derivative (C, F ). The value

of the credit derivative at maturity amounts to

F (T ) =

{
BT

∫ T

0
Ct/Bt dt + F , if τ > T

BT

∫ τ

0
Ct/Bt dt + Z(τ) , if τ ≤ T

.

The probability distribution of Z can depend on the default time. We suppose at

any time before default the recovery an expectation μZ(τ) and a standard deviation

σZ(τ) under P for a credit event occurring at time τ . Because of (2) we have also

0 ≤ μZ(τ) ≤ BT

∫ T

τ

Ct/Bt dt + F

for 0 < τ ≤ T . For technical reasons we assume supτ∈[0,T ] σ
Z(τ) < ∞. The

information Ft available at the financial market at time t is given by the marked

inhomogeneous poisson process HZ = (H, Z), which is stopped at the first jump:

2For example this procedure is introduced in Jarrow and Turnbull (1995) and Jarrow, Lando
and Turnbull (1997).
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Ft = σ(HZ
t ) for t ∈ [0,T ].3 When Ω denotes the state space the economy is described

by (Ω,F ,P ).

The stochastic recovery rate of the credit derivative (Z, C, F )

δ(τ) =
BT

∫ τ

0
Ct/Bt dt + Z(τ)

BT

∫ T

0
Ct/Bt dt + F

∈ [0,1] (3)

relates the final value of the defaultable claim’s cash flows (Z, C, F ) to the final

value of the default-free, but identical derivative’s cash flows (C, F ).4 Because of

the assumption (2) the recovery is lower than one. If the recovery only depends

on the uncertain default time, we will call it single-stochastic. If it is subject to

another source of risk, we will denote the recovery double-stochastic.

3.2 Single-stochastic recovery payment

A defaultable claim with single-stochastic recovery can be duplicated by a hedging

strategy H = (hS,hB) composed of hS defaultable zeros with total loss and hB

shares in the money market account.5

Proposition 1 (Replication for Single-Stochastic Recovery)

The credit derivative (Z,C,F ) with single-stochastic recovery is duplicated by the

hedging strategy H = (hS,hB) with

hS
t = (C̃T BT + F )

[
1 − 1

Xt−BT

(δ(t) − μ̃δ(t))

]
,

hB
t = Vt(H)/Bt − hS

t Xt− = (C̃T + F/BT )δ(t)

for t ≤ τ and hS
t = 0, hB

t = hB
τ for t > τ . Here δ describes the recovery rate

from (3), C̃t =
∫ t

0
Cs/Bs ds denotes the present value of all cash flows C during [0,t]

assuming default has not occurred until t and the deterministic function μ̃δ(t) =∫ T

t
δ(τ)λ̂(τ) exp{−

∫ τ

t
λ̂(s) ds} dτ = EQ[δ11{τ≤T}|τ > t] depicts at time t the under

the martingale measure Q expected recovery for the credit event taking place in

(t,T ].

3If the financial market is not only subject to default and recovery risk but also to further
sources of risk, for example interest rate risk, the filtration F is generated by several filtrations –
one reflecting the default and recovery risk and another describing for example the interest rate
development. See Bielecki and Rutkowski (2002).

4Bakshi, Madan and Zhang (2006, p. 22) define the recovery rate by means of the out-standing
payments. But the definition above simplifies the following formulae for the hedging strategies.

5Proposition 1 follows directly from Proposition 2.
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The duplication strategy keeps at every time t as much in the money market ac-

count, that this position has an value relating to the maturity time corresponding

to the value of the defaultable claim in maturity in the case of default at time τ = t:

Z(t)+C̃tBT = δ(t)(C̃TBT +F ). The value of the position in the defaultable zeros at

time t < τ equals the expected of future discounted payments minus the discounted

payments in the case of default at time t:

hS
t Xt = (C̃T + F/BT )

(
XtBT + μ̃δ(t)

)
− (C̃T + F/BT )δ(t)

= (C̃T + F/BT )
(
EQ[11{τ>T}|τ > t] + EQ[δ11{τ≤T}|τ > t]

)
−(C̃T + F/BT )δ(t)

= EQ[F (T )/BT |τ > t] − (C̃T + F/BT )δ(t) .

If the recovery rate is constant, this means δ(τ) = δ for all default times τ and

therefore μ̃δ(t) = δ(1−Xt−BT ), it will be possible to replicate the credit derivative

(Z, C, F ) with single-stochastic recovery by a static hedge: Buy (1− δ)(C̃T BT +F )

defaultable zeros with total loss and δ(C̃T + F/BT ) shares of the money market

account.

3.3 Double-stochastic recovery payment

Every probability measure Q ∈ Q with corresponding default intensity λ̂ and arbi-

trary distribution of the recovery rate with values in [0,1] represents an equivalent

martingale measure if the null sets of the distribution of the recovery rate under

Q and P are the same. The financial market will be arbitrage-free. But it will

be incomplete, if the recovery rate is not P -a.s. known, given that default occurs

in τ . For this reason defaultable claims with a double-stochastic recovery can not

be duplicated. The incompleteness of the financial market can also be realized as

follows: There are two sources of risk – the default time and the amount of the

recovery are uncertain, but there exists only one a financial instrument for hedging

the occurrence of default. Therefore in this section we determine hedging strate-

gies for defaultable claims which minimize the risk locally. More precisely, we solve

Problem 2 as stated in the Appendix. This rather technical formulation is due to

Schweizer (1991) and can be seen as continuous-time analogue of Problem 1.

If the recovery is single-stochastic the locally risk-minimizing hedge will concur with

the replication strategy from proposition 1. To identify the LRM-hedge for credit

derivatives with double-stochastic recovery we use the results of Schweizer (1991).

10



The discounted value process of an defaultable zero with total loss can be written

as X = X0 + A + M , since

dXt = λ̂(t)Xt−dt − Xt−dHt

= Xt−(λ̂(t) − λ(t))dt︸ ︷︷ ︸
dAt:=

−Xt−dH̃t︸ ︷︷ ︸
dMt:=

.

Here H̃t = Ht −
∫ t∧τ

0
λ(s) ds denotes the compensated default process, A describes

the continuous drift component with A0 = 0, M depicts a square integrable P -mar-

tingale6 with M0 = 0, and finally the constant fulfills X0 = exp
{
−
∫ T

0
λ̂(s) ds

}
/BT .

Due to proposition A.1 and calculation rules7 for the conditional quadratic variation

it follows

d〈M〉t = X2
t−d〈H̃〉t = X2

t−λ(t)d(t ∧ τ) = X2
t∧τ−λ(t)d(t ∧ τ) .

Because of dAt = Xt−(λ̂(t) − λ(t))dt = Xt∧τ−(λ̂(t) − λ(t))d(t ∧ τ) we obtain At =∫ t

0
α̃s d〈M〉s with

α̃t =
1

Xt∧τ−

(
λ̂(t)

λ(t)
− 1

)
,

therefore X = X0 +
∫

α̃ d〈M〉 + M . Hence the conditions X(1) and X(3) from

Schweizer (1991) are fulfilled. Since P (τ = T ) = 0 and XT is P -a.s. continuous

at T . Hence the price process X assures X(5). If the default intensities fulfill

the estimation EM [|α̃| log+(|α̃|)] < ∞8, X will also be subject to condition X(4).9

However, due to 〈M〉t = 0 if t > τ the condition X(2) is not fulfilled. Although

we can apply the results from Schweizer (1991) to the intensity model, because

after default the financial market is not subject to any risk, in addition Xt = 0

for t > τ and hence the locally risk-minimizing hedge must be self-financing with

hS
t = 0 and hB

t = δ(C̃T + F/BT ) for t > τ . The share in the money market account

results from the requirement VT (H) = F (T ) = δ(C̃T BT + F ). Taking this into

account, lemma 2.1, lemma 2.2 from Schweizer (1991) and hence considering the also

6Since the process H̃ is a square integrable martingale and due to proposition A.1 from ap-
pendix A [H̃,H̃ ] = H holds, besides the process X− is predictable and EP [

∫ T

0
X2

t− d[H̃,H̃]t] =
EP [
∫ T

0 X2
t− dHt] < ∞ holds, M is because of Protter (1990, p. 142) also a square integrable

martingale.
7For example see Protter (1990).
8Here EM [·] denotes the expectation under the Doléans-Dade measure PM = P × 〈M,M〉.
9If the default intensities fulfill for example the condition inft∈[0,T ] |λ̂(t) − λ(t)|/|λ(t)| > 0, the

estimation EM [|α̃| log+(|α̃|)] < ∞ holds.
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applicable theorem 3.2 from Schweizer (1990) proposition 2.3 and theorem 2.4 from

Schweizer (1991) maintain valid. That is the reason why the LRM-hedge can be

identified via the following Föllmer-Schweizer-decomposition (FS-decomposition).10

Lemma 1 (FS-Decomposition of a Credit Derivative)

The credit derivative (Z, C, F ) has the following strong Föllmer-Schweizer-decom-

position:

F (T )/BT = F (0) +

∫ T

0

ξF
t dXt + LF

T ,

whereas ξF
t = (C̃T BT + F )[1− (μδ(t)− μ̃δ(t))/(BT Xt−)] holds for t ≤ τ and ξF

t = 0

for t > τ , the constant is F (0) = (C̃T BT + F )(X0 + μ̃δ(0)/BT ) and the martingale

LF , which is orthogonal to M , is given as LF
t = Ht(C̃T + F/BT )(δ − μδ(τ)).11 The

function μδ(τ) = (C̃τBT +μZ(τ))/(C̃T BT +F ) describes the expected recovery rate

under the statistical probability measure assuming a default at time τ and finally

we denote μ̃δ(t) =
∫ T

t
μδ(τ)λ̂(τ) exp{−

∫ τ

t
λ̂(s) ds} dτ .

As described in Schweizer (1991) the Föllmer-Schweizer-decomposition can be eval-

uated by means of the minimal martingale measure P min.12 We obtain for the

density of the minimal martingale measure:13

Zmin
t = E

{
−
∫

α̃ dM

}
t

= E
{∫ t∧τ

0

λ(s) − λ̂(s) ds +

(
λ̂(τ)

λ(τ)
− 1

)
Ht

}

=

{
exp{
∫ t

0
λ(s) − λ̂(s) ds} , if t < τ

�λ(τ)
λ(τ)

exp{
∫ τ

0
λ(s) − λ̂(s) ds} , if t ≥ τ

.

Thus the default intensity under P min concurs with λ̂ and the recovery has the same

distribution under P min as under the statistical probability measure P . Therefore

the function μ̃δ(t) describes the expectation of the recovery for default occurring in

10Lemma 1 is proved in appendix A.
11Since δ is unknown before default and H is null for all t < τ , this notation can be taken as

LF
t = 0 if t < τ and LF

t = (C̃T + F/BT )(δ − μδ(τ)) if t ≥ τ .
12The denomination ”minimale martingal measure” has it seeds in the properties of this mea-

sure: In the context of Schweizer (1991) Pmin is the measure that carries X over in a martingale
but keeps the remaining model structure. Schweizer (1999) shows that the minimale martin-
gale measure minimizes the reciprocal of the relative entropy H(P/Q) = EQ[log dQ/dP ] for all
equivalent martingale measures Q.

13For evaluing the stochastic exponential see, e.g., Protter (1990, p. 77).
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t < τ ≤ T under the condition that the firm is still solvent in t:

μ̃δ(t) = Emin[δ11{τ≤T}|τ > t] = Emin[δ11{τ≤T}|t < τ ≤ T ]P min(τ ≤ T |τ > t) . (4)

Due to the results of Schweizer (1991) the Föllmer-Schweizer-decomposition pro-

vides the locally risk-minimizing hedging strategy considering that the function

V F
t = Emin[F (T )/BT |Ft] fulfills

V F
t = F (0) +

∫ t

0

ξF
s dXs + LF

t =

{
(C̃T BT + F )(Xt + μ̃δ(t)/BT ) , if t < τ

(C̃T + F/BT )δ , if t ≥ τ

because of the formulae (A2) and (A3) from the proof of lemma 1 in appendix A.

Proposition 2 (LRM-Hedge)

The locally risk-minimizing hedge of the credit derivative (Z, C, F ) amounts to

hS
t = ξF

t = (C̃T BT + F )

[
1 − 1

Xt−BT
(μδ(t) − μ̃δ(t))

]
,

hB
t = V F

t− − hS
t Xt− = (C̃T + F/BT )μδ(t) for every t ≤ τ .

After default t > τ we have

hS
t = 0 , hB

t = δ(τ)(C̃T + F/BT ) =
(
Z(τ)/BT + C̃τ

)
.

In the case of a defaultable claim with single-stochastic recovery the locally risk-

minimizing hedge collapses to the duplication strategy given in proposition 1.

Every time t < τ the locally risk-minimizing hedging strategy keeps as much in

the money market account, that this position has a value in the amount of the

under the statistical measure expected recovery in addition to the accumulated

accrued payments μZ(t) + C̃tBT = μδ(t)(C̃T BT + F ) until default at τ = t. At

default the share in the money market account makes a jump in the amount of

(Z(τ)−μZ(τ))/BT such that the value of the hedging strategy at maturity coincides

with the value of the derivative Z(τ) + C̃τBT = δ(τ)(C̃T BT + F ) = F (T ). The

position of defaultable zeros with total loss at time t is equal to the under the

minimal martingale measure expected discounted future payments assuming no

default in t minus the under the minimal martingale measure expected recovery if

a credit event occur at t, because due to (4):

hS
t Xt = (C̃T + F/BT )

(
XtBT + μ̃δ(t)

)
− (C̃T + F/BT )μδ(t)

= (C̃T + F/BT )
(
Emin[11{τ>T}|τ > t] + Emin[δ11{τ≤T}|τ > t]

)
−(C̃T + F/BT )μδ(t)

= Emin[F (T )/BT |τ > t] − (C̃T + F/BT )μδ(t) .

13



Because of the relation C(H) = V F
0 + LF the LRM-hedge is self-financing at every

point in time before and after default. But at default money accrues and outflows,

respectively depending on the realized recovery δ(τ) differs upwards and downwards,

respectively from the expected payment at default μδ(τ). In average the locally risk-

minimizing hedging strategy gets out without means. This implies that the hedge

is mean-self-financing as expected according to proposition 2.3 in Schweizer (1991).

If the recovery is single-stochastic the LRM-hedge will even been self-financing and

therefore will depict a replication strategy. For the special case, that the expected

recovery rate does not depend on the default time, i.e. μδ(τ) = μδ at 0 < τ ≤ T , and

hence μ̃δ(t) = μδ(1−BT Xt−) for t ≤ τ , the locally risk-minimizing hedge simplifies

to an statical hedge:

H = (hS,hB) = ((C̃T BT + F )(1 − μδ),(C̃T + F/BT )μδ) .

Proposition 2 shows that the locally risk-minimizing hedge depends only on the

expected payment at default under the statistical probability measure, but not on

other details on the probability distribution of the recovery. Hence we achieve the

following result:

Proposition 3 (Impact of the Recovery Modeling)

The locally risk-minimizing hedge for a credit derivative (Zd,C,F ) with a double-

stochastic recovery concurs with the LRM-hedge for a defaultable claim (Ze, C, F )

with single-stochastic recovery for all points in time until default provided that the

under the statistical probability measure expected recovery coincide, i.e. μZd
(τ) =

μZe
(τ) = Ze(τ) for every 0 < τ ≤ T .

3.4 An example

We consider a financial market where a defaultable zero of a firm with total loss

at default and maturity 10 years is traded. Furthermore, we assume a flat term

structure with r = 5 %. The default time possesses an exponential distribution

with intensity λ = 0,05 and λ̂ = 0,20, respectively under the statistical probability

measure and the martingal measure, respectively. In the following, we determine

hedging strategies of a defaultable zero with recovery payment at default. We

assume a single-stochastic, one time even a constant recovery amount of Ze = δe =

40 %, another time we consider a double-stochastic recovery which possesses at

every default time a expected amount of μZd
= μδd

= 40 %.
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Figure 3: LRM-hedge

The left figure describes the locally risk-minimizing strategy of the defaultable zero with
constant recovery. This hedge corresponds to the duplication. The right figure depicts the
LRM-hedge of the defaultable zero with an uncertain recovery payment assuming that at
default a recovery rate of 50 % is realized. The solid line describes in each time the hedge
ratio and the dashed line the shares invested in the money market account.

Figure 3 shows the locally risk-minimizing hedging strategy of a zero with single-

and double-stochastic recovery. We assume, that the firm defaults after 5 years and

that the realized recovery rate amounts to 50 % in the case of double-stochastic

recovery modeling. As due to proposition 3 expected the LRM-hedge coincides

until default for the cases of a single- and a double-stochastic recovery. After the

credit event the shares in the money market account of the locally risk-minimizing

strategies differ since the realised payment at default are different.

If an investor prefers a self-financing hedging strategy, the so-called super-hedging

strategy, which assures a liquidation value at maturity at least as high as the pay-off

of the derivative, i.e. VT (H) ≥ F (T ) P -a.s., then the recovery modeling has got

impact on the hedging strategy as the following will show. Assuming a constant

recovery payment of 0,40 the super-hedge corresponds to the duplication strategy

H = (hS,hB) = (0,60; 0,40/BT ) as well as the LRM-hedge. If the payment at

default is uncertain, the super-hedge depends on the distribution of the recovery,

more precisely on the domain of the recovery payment. Assuming that the recovery

payment can reach values on [0, 1] and [0, 0,95], respectively, the super-hedge holds

H = (hS,hB) = (0; 1/BT ) and H = (hS,hB) = (0,05; 0,95/BT ), respectively.
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4 Hedging in structural models

4.1 Model

Merton (1974) models the possible default of a firm with a single liability carry-

ing a promised terminal payoff D̄ by comparing the total firm’s value VT at the

debt’s maturity with the notional value of debt D̄: If the firm value VT exceeds the

outstanding debt the liability is repaid in full, otherwise the firm defaults and the

bondholders receive the amount VT < D̄, i.e.

τ =

{
T , if VT < D̄

∞ , if VT ≥ D̄
.

The default process and the price of credit derivatives depend primarily on the firm

value. That is the reason why Merton’s model is assigned to the class of structural

models. Merton (1974) assumes the firm value V to follow a geometric Brownian

motion with constant volatility σ and constant drift α,

dV

V
= α dt + σ dW and Vt = V0 exp

{(
α − 1

2
σ2

)
t + σWt

}
, (5)

where W is an standard Brownian motion under the statistical probability measure

P . The financial market is characterized by the probability space (Ω,F ,P ) with

filtration Ft = σ(Ws, 0 ≤ s ≤ t) = σ(Vs, 0 ≤ s ≤ t). Besides Merton assumes a

flat term structure with interest rate r. Again, Bt = exp{rt} denotes the value of

the money market account at t. Furthermore, trading takes place continuously in

time and the financial market is frictionless. If D and E, respectively, denote the

market value of debt and equity, respectively then in Merton’s model the relation

V = D + E will always be fulfilled. At default in maturity the obligors receive VT

and the investors go away empty-handed, i.e. D(T,VT ) = min(D̄,VT ) and E(T,VT ) =

max(VT − D̄,0). Merton’s model is rather simple with a single liability and default

occurring at most at time T . Moreover, Merton (1974) neglects costs of financial

distress.

In this section Merton’s model is extended by allowing bankruptcy costs. This

means a stochastic amount κVT falls due at default as a result of the insolvency

proceedings’ settlement. We assume that the percentage bankruptcy costs κ ∈ [0,1]

is a random variable independent of the firm’s value.14 The market value of debt

14This modeling traces back to Leland (1994) and Leland and Toft (1996). However, these
authors assume that the percentage bankruptcy costs are not subject to any uncertainty.
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and equity at maturity are

D(T,VT ) =

{
D̄ , if VT ≥ D̄

(1 − κ)VT , if VT < D̄
and E(T,VT ) = max(VT − D̄,0) .

If BC (T,VT ) = κVT 11{VT <D̄} denotes the costs of financial distress, the equation

VT = E(T,VT ) + D(T,VT ) + BC (T,VT )

will hold. The variable V modeled according to (5) will not describe the sum of

debt and equity, if we account for bankruptcy costs. But the variable V includes

the value of the possibly accrued costs of financial distress as well. Therefore V

depicts the gross firm’s value. The financial market, composed of the money market

account and the gross firm’s value V , is arbitrage-free both with certain percentage

bankruptcy costs and uncertain, since there exists an equivalent martingale measure

Q. In Merton’s (extended) model every equivalent martingale measure Q (defined

on FT ) arises from the statistical measure P via the following Radon-Nikodym-

density:15

dQ

dP
= exp

{
−α − r

σ
WT − 1

2

(
α − r

σ

)2

T

}
. (6)

Under a martingale measure Q the firm value process is given as

Vt = V0 exp

{(
r − 1

2
σ2

)
t + σW̃t

}
, (7)

whereas W̃t = Wt + α−r
σ

t denotes a standard Brownian motion under Q.16

As long as the percentage bankruptcy costs κ are constant P -a.s., the equivalent

martingale measure from (6) is unique. Otherwise every probability measure fulfill-

ing (6) is an martingale measure with an arbitrary distribution of κ. It is equivalent,

if the distribution of κ under this measure has the same null sets than under the

statistical probability measure P . Since the market value of the equity at time T

does not depend on the costs of financial distress (corresponding to the value of a

call on the firm’s value with strike D̄), the expected discounted value of the equity

holders’ share under Q can be calculated via the Black-Scholes-formula. We have17

Et = EQ[Bt/BT E(T,VT )|Ft] = Vt N (d1) − Bt(T )D̄N (d2) (8)

15Girsanov’s theorem proves this lemma. See theorem 7.2.3 in Elliott and Kopp (1999, p. 138)
and their application to the Black-Scholes-model in Elliott and Kopp (1999, p. 154).

16This follows from Girsanov’s theorem. See Elliott and Kopp (1999, p. 154).
17See, for example, Elliott and Kopp (1999, p. 165).
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for all possible equivalent martingale measures Q. Where d1 = d1(t) = d1(Vt,r,D̄,t) =

(ln(Vt/D̄) + (r + 0,5σ2)(T − t))/(σ
√

T − t) and d2 = d2(Vt,r,D̄,t) = d1(Vt,r,D̄,t) −
σ
√

T − t are used. N (·) denotes the distribution function of the standard normal

distribution and Bt(T ) = exp{−r(T − t)} describes the value of a risk-free bond

with face value 1 and maturity T at point in time t. The expected discounted mar-

ket value of debt and of the bankruptcy cost will depend on the martingale measure

Q, if κ is not P -a.s. Otherwise we have

Dt = EQ[Bt/BT D(T,VT )|Ft] = (1 − κ)Vt (1 −N (d1)) + Bt(T )D̄N (d2) , (9)

BC t = EQ[Bt/BTBC (T,VT )|Ft] = κVt (1 −N (d1)) (10)

for every 0 ≤ t ≤ T as the proof in the appendix A shows. The sum of the equity’s

and debt’s market values v(t,Vt) = E(t,Vt) + D(t,Vt) is called net firm’s value.

Since the firm value is not traded, we are searching hedging strategies composed

of money market account and stocks of the firm below. We assume that the com-

pany issued s stocks and D̄ defaultable zeros with face value 1 and maturity T

at t = 0. The value of a share St at time t is St = Et/s. To simplify matters

we assume that at any time the firm’s value is known. Due to equation (8) the

firm’s value can be replicated by a self-financing hedging strategy, which consists

of exp{−rT}D̄N (d2)/N (d1) money market accounts and s/N (d1) stocks. There-

fore every trading strategy HV = (hV ,hB), composed of hV shares of the firm’s

value and hB money market accounts, can be transferred to a hedging strategy H

consisting of hS = s/N (d1)h
V stocks and hB +exp{−rT}D̄N (d2)/N (d1)h

V money

market accounts, so that Vt(H
V ) = Vt(H) at any time t. Furthermore every prob-

ability measure is martingale measure of V if and only if it is one of S, assuming

the value of the equity modeled by relation (8). Consequently the assertions (6)

and (7) maintain valid for the financial market composed of money market account

and stocks of the firm.

4.2 Single-stochastic recovery payment

Credit derivatives with a pay-off not depending on the bankruptcy costs are replica-

ble. The following proposition specifies the duplication strategy.18

18The hedging strategies follows from the above described relation between H = (hS ,hB) and
HV and moreover Elliott and Kopp (1999, p. 163 ff.)

18



Proposition 4 (Duplication in Merton’s Model)

A defaultable claim, whose pay-off can be written as a function of the firm’s value VT

at T , i.e. F (T ) = f(VT )19 possesses a duplication strategy H = (hS,hB) composed

of hS stocks and hB money market accounts. With the auxiliary function

G(t,v) =
1√
2π

∫ ∞

−∞
f
(
v exp

{
(r − 0,5σ2)t + σx

√
t
})

e−x2/2 dx

it follows

hS
t = Bt(T ) · ∂G

∂v
(T − t,Vt) ·

s

N (d1)
,

hB
t = exp{−rT}

(
G(T − t,Vt) −

∂G

∂v
(T − t,Vt)

[
Vt − Bt(T )D̄

N (d2)

N (d1)

])
.

The liquidation value of the hedging strategy H = (hS,hB) at time t is Vt(H) =

Bt(T )G(T−t,Vt), particularly it holds VT (H) = F (T ) and the unique arbitrage-free

price of the defaultable claim is F (0) = B0(T ) · G(T,V0).

Due to F (t) = Vt(H) = Bt(T )G(T − t,Vt) and ∂S/∂V = N (d1)/s the hedge ratio

hS can be rewritten to

hS =
∂F

∂V

/ ∂S

∂V
,

such that the duplication strategy from proposition 4 corresponds to a delta hedge.

Corollary 1 (Duplication of the Defaultable Zero – a Special Case)

If the percentage bankruptcy costs are not subject to any risk, the defaultable zero

can be replicated via the following strategy:

hS
t = −(1 − κ)

s

D̄

(
1 − 1

N (d1)

)
+

κs

D̄σ
√

T − t

ϕ(d1)

N (d1)
,

hB
t = exp{−rT}N (d2)

N (d1)
+ κ

(
exp{−rT}N (d2)

(
1 − 1

N (d1)

)
− exp{−rt} Vt

D̄σ
√

T − t
ϕ(d1) + exp{−rT} 1

σ
√

T − t
ϕ(d1)

N (d2)

N (d1)

)
.

Here ϕ(·) denotes the density function of the standard normal distribution.

19Here the function f : (0,∞) → IR must fulfill the integrability condition f(v) ≤ c(1+vk1)v−k2

with non-negative constants c, k1 and k2.
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4.3 Double-stochastic recovery payment

Because of proposition 4 every defaultable claim whose payoff depends only on the

firm’s value VT at maturity T can be replicated. In that case the locally risk-

minimizing hedging strategy coincides with die duplication strategy. Otherwise the

value of the derivative is affected by the random variable κ. To determine the

locally risk-minimizing strategy H for the defaultable zero, we first look for the

LRM-hedge HV = (hV ,hB), composed of hV shares of the firm desired value and

hB money market accounts. Then we are looking for the trading strategy H. This

two-stage approach simplifies the appropriate calculations. The discounted firm

value Ṽt = Vt/Bt is a continuous semimartingale with a continuous drift component

A and a square integrable martingale component M20:

Ṽt = V0 +

∫ t

0

Ṽs(α − r) ds︸ ︷︷ ︸
=:At

+

∫ t

0

Ṽsσ dWs︸ ︷︷ ︸
=:Mt

.

We obtain for the increment of the drift component dAt = Ṽt(α − r) dt and for the

conditional quadratic variation of the martingale d〈M〉t = Ṽ 2
t σ2 d〈W 〉t = Ṽ 2

t σ2 dt.

Hence, we have

Ṽ = V0 +

∫
α̃ d〈M〉 + M with α̃t =

α − r

σ2Ṽt

.

The mean-variance-trade-off-process

Kt =

∫ t

0

α̃s dAs =

(
α − r

σ

)2

t

is deterministic so that the structure condition from Schweizer (1991) is fulfilled.

Obviously, the requirements from Schweizer (1991) are satisfied and the locally

risk-minimizing hedge of the defaultable zero can be determined via the Föllmer-

Schweizer-decomposition. The Föllmer-Schweizer-decomposition can be calculated

with the minimal martingale measure. Latter is represented by

Zmin
T = E

{
−
∫

α̃ dM

}
T

= E
{
−α − r

σ
W

}
T

= exp

{
−α − r

σ
WT−

1

2

(
α − r

σ

)2

T

}
.

20Since the Brownian Motion W is a square integrable martingale under P with [W,W ]t = t, the
process Ṽ is continuous and hence predictable, besides EP [

∫ T

0 Ṽsσ d[W,W ]s] = EP [
∫ T

0 Ṽsσ ds] < ∞
holds, therefore due to Protter (1990, p. 142) M is also a square integrable martingale under P .
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Hence under the minimal martingale measure the firm’s value V is distributed as

described in (7) and the percentage bankruptcy costs have the same distribution

as under the statistical probability measure. The LRM-hedge is obtained via the

corresponding FS-decomposition as verified in the Appendix.

Lemma 2 (FS-Decomposition of a Defaultable Zero)

Assuming random percentage bankruptcy costs κ the defaultable zero possesses the

following Föllmer-Schweizer-decomposition:

B̃T (T )/BT = B̃0 +

∫ T

0

ξ
�B
t dṼt + L

�B
T ,

whereas ξ
�B
t = (1 − N (d1))(1 − κ̄)/D̄ + ϕ(d1)κ̄/(D̄σ

√
T − t).21 The constant is

B̃0 = (1 −N (d1(0)))V0(1 − κ̄)/D̄ + B0(T )N (d2(0)) and the martingale L
�B, which

is orthogonal to M , fulfills L
�B
t = 0 for t < T and L

�B
T = 11{VT <D̄}(κ̄ − κ)VT /(BT D̄).

κ̄ = EP [κ|Ft] denotes the percentage bankruptcy costs expected under the statistical

probability measure at time t < T .

Assuming the special case where percentage bankruptcy costs are certain with

value κ̄, the constant of the Föllmer-Schweizer-decomposition coincides with the

arbitrage-free value of the defaultable zero. In this case the component ξ
�B corre-

sponds to the hedge ratio hV of the duplication strategy HV = (hV ,hB) for a zero.

Due to the results of Schweizer (1991) the locally risk-minimizing hedge composed

of shares of firm’s value and money market accounts

hV
t = −(1 − κ̄)

1

D̄
(N (d1) − 1) +

κ̄

D̄σ
√

T − t
ϕ(d1) ,

hB
t = V

�B
t− − hV

t Ṽt− ,

at t < T , whereas V
�B

t = (1 − κ̄)Ṽt (1 −N (d1)) /D̄ + exp{−rT}N (d2) for t < T

and V
�B

T = 11{VT <D̄} (1 − κ) VT

D̄BT
+ 11{VT ≥D̄}

1
BT

as well as κ̄ = EP [κ|Ft] at t < T . At

default it holds hV
τ=T = 0 and hB

τ=T = (1 − κ) VT

D̄BT
. Since V

�B
t coincides with the

arbitrage-free discounted price of a defaultable zero for every point of time t before

maturity assuming the percentage bankruptcy costs are surely κ̄, the LRM-strategy

H = (hS,hB) amounts to

Proposition 5 (LRM-Strategy of a Defaultable Zero)

The locally risk-minimizing hedging strategy H = (hS,hB) of the defaultable zero

21Here the last summand will converge against null P -a.s. if t approaches T .
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for t < τ amounts to

hS
t = −(1 − κ̄)

s

D̄

(
1 − 1

N (d1)

)
+

κ̄s

D̄σ
√

T − t

ϕ(d1)

N (d1)
,

hB
t = exp{−rT}N (d2)

N (d1)
+ κ̄

(
exp{−rT}N (d2)

(
1 − 1

N (d1)

)
− exp{−rt} Vt

D̄σ
√

T − t
ϕ(d1) + exp{−rT} 1

σ
√

T − t
ϕ(d1)

N (d2)

N (d1)

)
as well as hS

τ=T = 0 and hB
τ=T = (1 − κ)VT /D̄BT .

Therefore at any time t < τ the locally risk-minimizing hedges for the defaultable

zero are the same for certain κ̄ and uncertain κ percentage bankruptcy costs if

κ̄ = EP [κ] = EP [κ|Ft] (t < T ) holds.

Proposition 6 (Impact of the Recovery Modeling)

The locally risk-minimizing hedging strategy of a defaultable zero with double-

stochastic recovery, i.e. uncertain percentage bankruptcy costs κd, coincides at any

time before default with the locally risk-minimizing hedge of a defaultable zero with

single-stochastic, i.e. certain percentage bankruptcy costs κe, provided κe = EP [κd].

It can be easily shown, that the Föllmer-Schweizer-decomposition and hence the

LRM-hedge of a credit derivative with uncertain percentage bankruptcy costs κ can

be traced back to the case of certain percentage bankruptcy costs in the amount of

κ̄ = EP [κ] – similarly as in lemma 2 described –, if the recovery of the derivative

depends linear on the percentage bankruptcy costs. For this reason the assertion

of proposition 6 holds not only for a defaultable zero but also for a whole class of

credit derivatives.

4.4 An example

A corporation has issued a zero bond with maturity 10 years in t = 0. The firm’s

asset value holds V0 = 100 in t = 0 and is modeled as a Brownian motion with drift

μ = 8 % and volatility σ = 0,20 as described in equation (5). The corporation has

got a simple capital structure: it has issued s = 100 stocks in t = 0 and a single

liability in terms of zeros with maturity 10 years. The face value of the debt is

D̄ = 75. We assume that the percentage bankruptcy costs κ are uncertain. Under

the statistical probability measure it has got an expectation in amount of κ̄ = 20 %
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and at best it holds κmin = 2.5 %. Finally, we assume a flat term structure with

interest rate r = 5 %
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Figure 4: Four simulated paths of the firm’s gross value

The development of the hedging strategies depends strongly on the movement of

the gross firm’s value V . On this account we determine hedging strategies of the

defaultable zeros for four different gross developments of the firm’s value. While

the left lower (upper) illustration of figure 4 describes the case, that the corporation

keeps (barely) solvent, the corporation defaults (barely) in the right lower (upper)

illustration.

The solid lines in figure 5 illustrate the corresponding hedge ratios of the super-

hedge. The dotted lines depict the hedge ratio of the LRM-hedge. Assuming the

percentage costs of financial distress are certain κ̄ = 20 % the latter coincides with
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the duplication.
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Figure 5: Hedge ratios of the super-hedge and the LRM-hedge

It attracts attention, that the hedge ratio fluctuates sparsely and is small, if the

gross firm’s value lies upon the face value of debt. If the gross firm’s value is however

smaller than D̄, the hedge ratio reaches high value and is very volatile. Especially,

if the remaining time to maturity of corporate bond converges against null and

the firm’s value is situated under the debt’s face value, thus a credit event is most

likely, the hedge ratio explodes. Especially, the figures on the right hand side show

this. It must be pointed out, that these figures describe the hedge ratios only until

approximately 9.7 and 9.9 years, because in these cases the hedge ratios converge

against infinity if the remaining time until maturity tends to zero.

In figure 6 the solid lines depict the shares in the money market account of the super-
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hedge and the dotted lines the of the LRM-hedge. Assuming certain percentage

bankruptcy costs in the amount of κ̄ = 20 %, the latter coincide with the duplication

strategy.
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Figure 6: Shares in the money market account of the super- and LRM-hedge

It is obviously that the shares in the money market account fluctuate less than the

hedge ratios. They will be more stable, if the default probability is small. Especially,

the bottom left figure shows this for small remaining time until maturity. Comparing

the hedging strategies of figure 5 and 6, it stands out, that the hedge ratios and

the shares in the money market account, respectively of the super-hedge are always

smaller and higher, respectively than that of the locally risk-minimizing hedge. By

investing a bigger share in the risk-free money market account and reducing the

investment volume of the defaultable stocks it is assured, that the super-hedge

dominates the corporate zero-bond.
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5 Conclusion

We derive LRM-hedging strategies for a reduced-form model as well a structural

Merton-type model. The latter model differs from the original Merton-model by

assuming positive bankruptcy costs, given as percentage of the firm value at default.

As long as this percentage is a constant, we denote the corresponding recovery rate

as single-stochastic since the recovery amount depends only on the default event.

Otherwise, that is, if the percentage bankruptcy costs is random, we denote the

corresponding recovery rate as double-stochastic since the recovery amount depends

not only on the default event but also on the realization of another random variable.

Corresponding model variants are examined for the reduced-form model framework.

For both model classes it turns out that the corresponding LRM-strategy is not only

mean-self-financing but also self-financing if the modeled default recovery is single-

stochastic. That is, as long as the recovery amount is known in the event of default,

there exists a self-financing replication strategy for credit derivatives. Moreover,

we find that in the more realistic case of double-stochastic default recoveries, the

LRM-hedging strategy does only depend on the expected recovery amount, not on

other characterics of its distribution. This key result of the paper helps to justify the

frequent simplifying assumption that the default recovery is a constant, conditional

on the default event, when valuing and hedging credit derivatives.
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A Appendix

Problem 2 (Locally Risk-Minimizing Hedging in continuons time)

A trading strategy H with VT (H) = F (T ) P -a.s. is called locally risk-minimizing,

(LRM) for short, if it fulfills

lim inf
N→∞

rTN (H,Δ) ≥ 0 PM -a.s.22

for every null-convergent sequence of partitions TN = {t0 = 0,t1, . . . ,tN = T} of

[0,T ], i.e. TN ⊂ TN+1 and limN→∞ maxi=1,...,N(tNi − tNi−1) = 0, and every disturbance

Δ. Here a disturbance Δ = (δ,ε) is a trading strategy, such that δT = εT = 0

and
∫ T

0
|δs| d|A|s is bounded. Furthermore defining the remaining risk Rt(H), mea-

sured as the expected quadratic increase of the discounted hedging costs, Rt(H) =

EP

[
(CT (H) − Ct(H))2 |Ft

]
, the expression

rT (H,Δ) =

n−1∑
i=0

Rti(H + Δ|(ti,ti+1]) − Rti(H)

EP [〈M〉ti+1
− 〈M〉ti |Fti ]

11(ti,ti+1]

denotes the risk quotient for a trading strategy H, a disturbance Δ = (δ,ε) and the

partition T = {t0 = 0,t1, . . . ,tn = T}.

Hence, a trading strategy is locally risk-minimizing if a disturbance of the strategy

will raise the risk measured by the risk quotient.

Proposition A.1 ((Compensated) Default process)

The default process H , which is an inhomogeneous Poisson process stopped at the

first jump, fulfills

[H,H ] = H and 〈H,H〉t =

∫ t∧τ

0

λ(u) du .

The compensated default process H̃t = Ht −
∫ t∧τ

0
λ(u) du satisfies

[H̃,H̃ ] = H and 〈H̃,H̃〉t = 〈H,H〉t =

∫ t∧τ

0

λ(u) du .

22PM = P ×〈M,M〉 denotes the Doléans Dade measure of 〈M,M〉 on the product space Ω×[0,T ]
with the predictable σ-algebra.
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Proof. The assertions for the default process H follow from Protter (1990, p. 63)

and Brémaud (1981, p. 23). Since G : t →
∫ t∧τ

0
λ(u) du is continuous due to

Jacod and Shiryaev (1987, p. 52), we have [H,G] = 0 = [G,G] and hence [H̃,H̃] =

[H − G,H − G] = [H,H ] = H . Evidently, it follows 〈H̃,H̃〉 = 〈H,H〉.

Proof of Lemma 1.

Considering

dμ̃δ(t) = λ̂(t)(μ̃δ(t) − μδ(t))dt (A1)

and dXt = λ̂(t)Xt−d(t ∧ τ) if t < τ , for every t < τ we have

F (0) +

∫ t

0

ξF
s dXs = (C̃T BT + F )(X0 + μ̃δ(0)/BT )

+(C̃T BT + F )(Xt − X0)

+(C̃T BT + F )
1

BT

∫ t

0

λ̂(s)(μ̃δ(s) − μδ(s)) ds

= (C̃T BT + F )(Xt + μ̃δ(t)/BT ) . (A2)

Hence it follows

F (0) +

∫ t

0

ξF
s dXs = F (0) +

∫
[0,τ)

ξF
s dXs + ξF

τ ΔXτ

= (C̃T BT + F )(Xτ− + μ̃δ(τ)/BT )

+(C̃T BT + F )

(
1 − μδ(τ) − μ̃δ(τ)

BT Xτ−

)
(−Xτ−)

= (C̃T BT + F )μδ(τ)/BT for t ≥ τ . (A3)

By the definition of LF and since μ̃δ(T ) = 0 the equations (A2) and (A3) result in

F (0) +

∫ T

0

ξF
t dXt + LF

T = F (T )/BT

Because of LF
0 = 0 it follows EP [LF

0 ] = 0. LF is a square-integrable martingale since

EP [LF
s |Ft] = 11{τ≤t}(C̃T + F/BT )(δ − μδ(τ)) + 11{τ>t}

(
0

+(C̃T + F/BT )

∫ s

t

(μδ(τ) − μδ(τ))λ(τ) exp

{
−
∫ τ

t

λ(s) ds

}
dτ

)
= Ht(C̃T + F/BT )(δ − μδ(τ)) = LF

t .
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holds for s > t and supτ∈[0,T ] σ
Z(τ) < ∞. Finally, LF is orthogonal to M , since for

s > t we obtain

EP [LF
s Ms|Ft] = 11{τ>t}

(
C̃T +

F

BT

)∫ s

t

0 · Mτλ(τ) exp

{
−
∫ τ

t

λ(s) ds

}
dτ

+11{τ≤t}(C̃T + F/BT )(δ − μδ(τ))Mτ

= LF
t Mt ,

due to Mt = Mτ for every t ≥ τ .

Proof of the equations (9) and (10).

Since VT < D̄ is equivalent to (W̃T − W̃t)/
√

T − t < −d2(Vt,r,D̄,t) = −d2 we have

Dt
BT

Bt
= EQ[D(T,VT )|Ft] = D̄

∫ ∞

−d2

1√
2π

exp

{
−1

2
x2

}
dx

+
1 − κ√

2π

∫ −d2

−∞
Vt exp

{(
r − 1

2
σ2

)
(T − t) + σ

√
T − tx

}
exp

{
−1

2
x2

}
dx

= D̄ (1 −N (−d2))

+
1 − κ√

2π
exp{r(T − t)}Vt

∫ −d2

−∞
exp

{
−1

2

(
x − σ

√
T − t

)2
}

dx

= D̄N (d2) + (1 − κ)Vt exp{r(T − t)}N (−d2 − σ
√

T − t)

= D̄N (d2) + (1 − κ)Vt exp{r(T − t)} (1 −N (d1)) .

The market value of the bankruptcy costs results from equation (10) due to the

relation BC = V − D − E.

Proof of Corollary 1.

Assuming certain percentage bankruptcy costs κ the value of a defaultable zero at

maturity accounts for

B̃T (T ) =

{
1 , if VT ≥ D̄

(1 − κ)VT /D̄ , if VT < D̄
.

Similar calculations as in the proof of equation (9) show that the function G amounts

to

G(T − t,Vt) = N (d2) + (1 − κ)
Vt

D̄
exp{r(T − t)} (1 −N (d1)) .
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This results in

∂G(T − t,Vt)

∂Vt
= ϕ(d2(Vt,r,D̄,t))

∂d2(Vt,r,D̄,t)

∂Vt

+(1 − κ)
1

D̄
exp{r(T − t)}

(
1 −N (d1(Vt,r,D̄,t))

)
−(1 − κ)

Vt

D̄
exp{r(T − t)}ϕ(d1(Vt,r,D̄,t))

∂d1(Vt,r,D̄,t)

∂Vt

= (1 − κ)
exp{r(T − t)}

D̄
(1 −N (d1)) + κ

Vt

D̄
exp{r(T − t)}ϕ(d1)

∂d1

∂Vt

,

since

ϕ(d2) = ϕ(d1)Vt exp{r(T − t)}/D̄
and ∂d1/∂Vt = ∂d2/∂Vt = 1/σVt

√
T − t. Now the assertion of corollary 1 follows

immediately from proposition 4.

Proof of Lemma 2.

Since ξ
�B are the shares in V of the duplication strategy for a defaultable zero and

B̃0 describes the arbitrage-free price of the defaultable zero-coupon bond B̃κ̄ at time

t = 0, assuming the percental bankruptcy cost to be surely κ̄ , we have

B̃0 +

∫ T

0

ξ
�B
t dṼt =

B̃κ̄
T (T )

BT
= 11{VT ≥D̄}

1

BT
+ 11{VT <D̄}(1 − κ̄)

VT

D̄BT

and therefore

B̃0 +

∫ T

0

ξ
�B
t dṼt + L

�B
T = 11{VT ≥D̄}

1

BT
+ 11{VT <D̄}(1 − κ̄)

VT

D̄BT

+ 11{VT <D̄}(κ̄ − κ)
VT

D̄BT

= B̃T (T )/BT .

Obviously, the process L
�B is a martingale due to EP [κ|Ft] = κ̄ for t < T . Because

of the continuity of the martingale component it follows for the covariation

[L
�B,M ]t = L

�B
t Mt −

∫ t

0

Ms− dL
�B
s −
∫ t

0

L
�B
s− dMs

= 11{t=T}

(
L

�B
T MT − MT−L

�B
T

)
= 0

and also 〈L �B,M〉 = 0. Therefore L
�B is orthogonal to the martingale component M .
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