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Abstract

In this paper, we analyze corporate bonds with a rating-triggered step-

up provision in a continuous-time framework with bankruptcy costs and

tax benefits. While without any further frictions, step-up bonds do not

add firm value relative to straight debt, agency conflicts and asymmetric

information are two possible explanations for the issuance of these instru-

ments. We treat both motives (separately) in a unified framework to obtain

conclusions about both the optimal design and the conditions for the use of

step-up bonds. The closed-form solutions for the optimal contract design

reveal that step-up bonds issued by firms that face a risk-shifting prob-

lem fundamentally differ from those in the case of asymmetric information.

Furthermore, we show that firms with a high initial risk only use step-up

bonds to overcome problems of asymmetric information but not to mitigate

risk-shifting problems. A further difference between the two motives is that

in the case of risk-shifting, step-up bonds are only used when the agency

conflict is sufficiently severe, while for signalling reasons even a modest

problem of asymmetric information supports the use of step-up bonds.

JEL classification: G32, G13, C70

Keywords: Asset substitution/risk incentive problem, signalling, tradeoff theory,
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1 Introduction

Corporate bonds might be issued with several different provisions giving the bond-

holders some additional contractual rights. One of these rights is a so-called step-

up provision, which states that the initial coupon rate paid to the holders of the

bond will be increased once some predefined event takes place. Most frequently

this event is linked to the rating of the issuing firm. If the rating is downgraded to

some contractually laid down level, the coupon rate will be increased by a certain

fraction. A sizeable volume of such rating-trigger step-up bonds have been issued

in particular by firms from the telecom industry (see table 1 for a representative

example).

From an investors’ perspective, such a provision might be considered as nice to

have, since it promises a higher payment at a time when the credit risk of the

firm increases and thus the bond price would suffer otherwise. However, from

the perspective of the issuing firm, it is much less clear for why it might be a

good idea to write such a contract because firms have to pay out more to its debt

holders when less cash is available.

Empirical evidence for the consequences from a step-up feature is given by

Table 1: Deutsche Telekom’s Debt Issuance Program (excerpt)

ISIN Principal Coupon Maturity Date

XS0158875673 e 500,000,000 6.123%∗ Dec. 04, 2007

DE0006210446 e 1,000,000,000 5.75%∗ Feb. 12, 2008

XS0155788150 e 500,000,000 6.5%∗ Oct. 07, 2009

XS0155312829 GBP 500,000,000 7.125%∗ Sep. 26, 2012

XS0158739739 GBP 250,000,000 7.375%∗ Dec. 04, 2019
∗ In the event of ratings change by Moody’s and S&P that causes the

ratings to be below of Baa1 by Moody’s and BBB+ by S&P the interest

rates on the notes will increase by 0.5% with effect from the first interest

payment date after this rating change occurs. (Reversible)

Houweling et al. (2004) and Lando and Mortensen (2004). The latter calibrate

a reduced-form model and compare step-up bonds to otherwise similar straight

fixed-coupon bonds. They find that step-up bonds increase the cost of capital

for the issuer so that step-up features should be avoided. The observation that
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firms still use step-up bonds seems to be even more puzzling, when we analyze

this aspect in a typical tradeoff model for the optimal capital structure in a world

with tax benefits and bankruptcy costs (see e.g. Fischer et al. (1989) and Le-

land (1994)). Within this modelling approach, the optimal debt volume, that

maximizes the firm value, is positively related to the underlying state variable

(e.g. asset value or firm’s instantaneous cash flow). Hence, if the state variable

deteriorates and the firm value declines, an increase of the debt obligation cannot

be optimal in order to add firm value.1

As it is frequently the case in financial economics, two notorious distortions of

the perfect markets assumption are considered to explain this apparent puzzle:

Agency conflicts and asymmetric information. Thus, we have (at least) two intu-

itive candidate motives for the use of step-up provisions. The reasoning behind

the first distortion is that the step-up feature might be able to mitigate the

risk-shifting (asset substitution) incentive of manager-owners because a higher

risk increases the likelihood of a rating-trigger. Regarding the second distortion,

the step-up provision might also be considered as a credible device to signal some

non-observable pricing-relevant firm characteristics to potential investors because

primarily risky firms might not want to have a (costly) step-up feature.

Our paper is not the first to come up with these explanations for the use of step-

up bonds. Bhanot and Mello (2006) address the asset substitution problem, while

Manso et al. (2007) analyze the signalling hypothesis within the broader class of

performance-sensitive debt contracts. The broad conclusion emerging from exist-

ing literature is that step-up bonds cannot solve the risk-shifting problem,2 but

are able to credibly signal non-observable firm characteristics.3

However, there are still a number of open issues and shortcomings, that leave

unsettled the question if step-up bonds can be an optimal financing instrument.

First, Bhanot and Mello (2006) do not address a general optimization problem.

On the one hand, they do not consider the optimal step-up bond design as the

result of maximizing ex ante firm value with respect to all verifiable character-

1 Recent work by Strebulaev (2007) finds empirical evidence that data are more consistent

with comparative static predictions from trade-off theory than is traditionally thought.
2 “In general, an increase in the coupon level decreases firm value and does not inhibit (and

might even stimulate) asset substitution.”Bhanot and Mello (2006), Remark 6, p. 91.
3 See Manso et al. (2007), Proposition 1, p. 21.
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istics of such a contract.4 On the other hand, they only allow for a restricted

risk-shifting strategy.5 Second, in the signaling game of Manso et al. (2007),

firms can choose between issuing performance-sensitive debt or equity. They find

that performance-sensitive debt can establish a separating equilibrium in cases

where this is not possible with a straight bond.6 However, when debt is a crucial

financing instrument for firms (in order to benefit from tax benefits or to prevent

the loss of control rights to new investors), a signaling game, where the signal is

given by the specific bond design and not by the choice between debt and equity

should be considered. Third, both contributions neither aim at characterizing

the optimal step-up bond design, nor discuss conditions (with respect to the rel-

evant parameters) under which the use of step-up bonds might be optimal. This

however, are prerequisites to infer testable implications.

In this paper, we want to close the gap from the three concerns mentioned

above. For this purpose, we treat both motives (separately) in a unified frame-

work. Our goal is to characterize the optimal contract design as well as to derive

testable implications about the use of step-up bonds.

We find that in contrast to Bhanot and Mello (2006), step-up bonds can mitigate

the agency conflict if the more general optimization problem is solved. We are

able to derive closed-form solutions for the optimal step-up bond design and can

characterize the conditions under which the use of step-up bonds is optimal. With

respect to asymmetric information, we show that similar to Manso et al. (2007),

a separating equilibrium can be established when a signal is derived from the

specific bond design (i.e. the inclusion or exclusion of a step-up provision). We

can describe the optimal contract design and provide results concerning the con-

ditions for an equilibrium. Our major finding is that the equilibrium predictions

from the two hypotheses contrast sharply regarding the optimal bond design and

the optimal use of step-up bonds. In particular, the firm characteristics and an

observed bond design can immediately explain whether a risk-shifting problem

or a problem of asymmetric information is the main reason for why a firm uses

step-up bonds:

In terms of the optimal bond design, a bond with a finite step-up factor is is-

4 The same shortcoming applies to related work by Silva and Pereira (2007).
5 In their model, manager-owners have the possibility to alter the investment program only

right after debt issuance. Later risk-shifts are not possible.
6 This approach extends results by Ross (1977) to situations where bankruptcy costs are low.
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sued given that the risk-shifting problem can be mitigated with step-up bonds.

Conversely, for a problem of asymmetric information, a bond with a zero-coupon

is issued to signal favorable information that starts paying a coupon (infinite

step-up factor) once the rating event is triggered. Regarding the optimal use of

step-up bonds, we obtain that firms with a high initial risk never use step-up

bonds to mitigate risk-shifting problems, while for problems of asymmetric in-

formation step-up bonds can be an attractive device. In general, step-up bonds

are primarily used when the risk-shifting problem is sufficiently severe, while for

signalling reasons even a modest problem of asymmetric information supports

the use of step-up bonds.

The remainder of the paper is organized as follows: The next section puts up

the general model framework and establishes that absent any frictions, step-up

bonds are not optimal. In section 3, we introduce agency conflicts in the sense

that manager-owners might follow a self-interested risk-shifting policy. Section

4 considers the alternative explanation that the use of step-up bonds is due to

asymmetric information problems. Finally, in section 5, the different equilib-

rium predictions are discussed. Section 6 concludes. Proofs are contained in the

appendix.

2 General Model Framework

We consider a firm that owns some productive assets generating a continuous

cash-flow x, whose dynamics are given by

dxt = µxt dt + σxt dZt, x0 > 0, (1)

where, as usual, dZt denotes the increment of a standard Wiener process and µ

and σ are constant parameters. For pricing purposes, we assume perfect capital

markets on which a risk-free asset with a constant instantaneous risk-free interest

rate r is continuously traded. Either all market participants are risk-neutral or

markets are arbitrage-free which implies that there exists a martingale measure

which allows for risk-neutral pricing. In the latter case µ denotes the risk-adjusted

drift term which is restricted to µ < r to guarantee finite security values. The

present value of any arbitrary claim C(x) whose instantaneous payoff is an affine

function a x + b on the state variable x, can then be written as the sum of the
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present value of the flow of payoffs to the claimholders from time t up to some

(stopping) time T and the present value of the claim at that time :

Ct = Et

[
∫ T

t

e−r(s−t)(a xs + b) ds + e−r·T L(xT )

]

.

To apply this general framework to the case of a firm that considers to issue debt

with a rating-trigger step-up feature, note that such a contract will essentially

consist of three elements:

(i) The initial coupon rate c before a rating-trigger,

(ii) the step-up factor δ > 1 (i.e. after a step-up event has occurred, the new

coupon is δc), and

(iii) the trigger threshold xT < x0, i.e. once the cash flow x hits the barrier

xT , the step-up takes place. We consider the case of an irreversible step-up

event. If subsequent to the step-up, x rises above xT again, the coupon rate

remains at δc.

Thus, we can completely characterize the step-up bond contract by the triple

(c, δ, xT ). The equity holders are residual claimants in the sense that they imme-

diately receive the cash flow that exceeds the coupon obligations. If the cash flow

is insufficient to cover the coupon payments, deep-pocketed equity holders have

to make up for the difference. This standard payout policy means that we rule

out that the firm finances the coupon payments by selling part of the assets and

that the dividend is set strategically.7 Furthermore, we assume that absolute pri-

ority of the debt claim is enforced so that renegotiations, which result in strategic

debt service, cannot take place.8 Since this rule implies that equity holders are

left with nothing in the case of default, we obtain the following representation

for the equity value, which we denote by S:

St = Et

[
∫ Tb

t

e−r(s−t)(1 − τ)(xs − c − 1{s≥TT }(δ − 1)c) ds

]

(2)

= Et

[
∫ TT

t

e−r(s−t)(1 − τ)(xs − c) ds +

∫ Tb

TT

e−r(s−t)(1 − τ)(xs − δc) ds

]

,

7 See e.g. Morellec (2001) for a model where assets can be sold to finance debt service or

dividend payments. Strebulaev (2007) allows for asset sales if firms enter into financial

distress.
8 See e.g. Anderson and Sundaresan (1996), Mella-Barral (1999), Fan and Sundaresan (2000),

Koziol (2006) or Hackbarth et al. (2007) for the implications of strategic debt service.
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where 1{·} denotes the indicator function and τ stands for the tax rate on corpo-

rate income. For notational convenience, we abstract from further taxes on the

personal level. Tb denotes the stopping time, i.e. the time of default of a levered

firm, while TT denotes the time when the rating-trigger level is attained.

To have a meaningful problem, we can focus on those step-up bonds that imply

TT < Tb, i.e. the step-up occurs before the firm defaults. It is apparent that a

step-up bond design so that the coupon δc after a step-up will never be paid to

debt holders but the firm defaults before, is not optimal to increase the value of a

firm that uses a straight consol bond. Intuitively, this is due to the fact that for

TT ≥ Tb the coupon payments to debt holders are like those of a straight consol

bond but the potential increase of the coupon obligation can result in an earlier

costly default.

With standard pricing techniques, we can write the equity value S in (2) as of

time t0 in the following way:

S0 = (1 − τ)
[

(

x0

r − µ
−

c

r

)

−

(

xb

r − µ
−

c

r

)(

x0

xb

)β

−
(δ − 1)c

r

(

(

x0

xT

)β

−

(

x0

xb

)β
)

]

, (3)

where xb and xT are the cash flow levels that determine the corresponding stop-

ping times, i.e. Tb = inf{s; xs = xb} and TT = inf{s; xs = xT}. The parameter

β < 0 can be obtained from the (negative) root of the characteristic equation
σ2

2
y(y − 1) + µy − r = 0 in y and amounts to

β = −
µ − σ2/2 +

√

2 r σ2 + (µ − σ2/2)2

σ2
.

The variable β contains the characteristic parameters µ and σ that drive the cash

flow process and the risk-free rate r.

The term
(

x
x(·)

)β

, that plays an important role for all security values, has the

interpretation of a probability-weighted discount factor,9 i.e. the present value of

one unit of account that is paid out if and only if the process xt hits the boundary

x(·) from above for the first time. Therefore 0 <
(

x
x(·)

)β

≤ 1 holds.

Equation (3) shows that the equity value with the step-up feature equals the

9 This interpretation follows from the fact that E

[

∫ T(·)

0
e−r s ds

]

=
(

x0

x(·)

)β

. See also Mella-

Barral (1999), p. 541.

6



equity value under plain debt (first line) for the given default barrier xb plus an

additional term (1 − τ)

[

(δ−1)c
r

(

(

x0

xT

)β

−
(

x0

xb

)β
)]

which accounts for the addi-

tional coupon payments once the step-up has taken place, i.e. the trigger level xT

has been attained. Since xT ≥ xb, this component is always positive (for δ > 1)

and thus reduces the equity value for a given default barrier xb. We note that

the optimal default barrier xb depends on the coupon δc after a step-up.

Analogous reasoning leads to the debt value. However, due to the absolute pri-

ority rule, we need to specify the value of debt in case of default. In line with

most of the literature,10 we assume that in case of default the debt value equals

the value of an unlevered firm minus bankruptcy costs. The variable α denotes

the bankruptcy costs as a fraction of the unlevered firm value (1 − τ) xt

r−µ
at the

default time. The default value L(xt) at the cash flow level xt is then given by

L(xt) = (1 − α)(1 − τ)
xt

r − µ
.

We note that a default either means a restructuring of the firm or a liquidation.

As long as both events are associated with bankruptcy costs, it is not crucial for

us which type of a default is present.

Applying the general solution, we obtain the following representation for the

present value of debt D:

D0 =
c

r
+
(

L(xb) −
c

r

)

(

x0

xb

)β

+
(δ − 1)c

r

(

(

x0

xT

)β

−

(

x0

xb

)β
)

. (4)

In line with the equity value S, we can understand the debt value D as the sum of

two components. The first two terms correspond to the value of a straight bond

for a given default barrier xb. The last term (δ−1)c
r

(

(

x0

xT

)β

−
(

x0

xb

)β
)

captures

the present value of an increase of the coupon due to a rating-trigger.

The value of the levered firm, which we denote by V is then the sum of (3) and

(4):

V = S + D.

In general, the initial owners of the firm face the problem to design the step-up

bond so that the firm value is maximized in t0 given the initial cash flow level

x0. In our setup, this is done by choosing some optimal security design, i.e. by

fixing the terms of the debt issue (c, δ, xT ). Note that these decision variables are

10 See e.g. Goldstein et al. (2001), Morellec (2004) or Hackbarth et al. (2007).
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contractible. Once the debt is issued, the firm acts in favor of the equity holders

rather than the entire firm value. Thus, the default barrier xb, which cannot be

part of a contract, is chosen by the firm so that the equity value is optimized. As

a consequence, the optimization problem of the firm reads:

max
(c,δ,xT )

V (c, δ, xT , x∗
b)

s.t. (5)

x∗
b = arg max

xb

E(c, δ, xT , xb).

Since a default can only take place after the step-up event, i.e. when the firm has

straight debt with a coupon δc outstanding, we can also apply the well-known

representation11 for the optimal default barrier in the case of straight debt by

incorporating the coupon δc after a step-up:

xb = δc ·
(r − µ)

r

β

(β − 1)
, (6)

This barrier is a result of the smooth-pasting condition of the equity value S in

the cash flow xt.
12 The barrier xb is linear in the coupon δc and independent of

the actual cash flow level xt.

Now, we can plug in the solution for the default constraint in order to obtain the

optimal design of the step-up bond that maximizes the firm value. We find that

bonds with a step-up feature are not required for an optimal firm value. We state

this as

Proposition 1 It is not optimal for a firm to issue a rating-trigger step-up bond,

as long as there are no agency conflicts regarding risk-shifting and no problems

of asymmetric information.

It is easily verified that the derivative of V with respect to the trigger level

xT is given by
∂V

∂xT

= cτ
(δ − 1) (−β)

rxT

(

x

xT

)β

,

which is apparently positive for any choice of c > 0 and δ > 1. Thus, a trigger

barrier xT below the current cash flow level x0 is not optimal.

11 See e.g. Goldstein et al. (2001) or Hackbarth et al. (2007).
12 It can be shown that the result of the value-matching and smooth-pasting condition is

equivalent to the maximization of the equity claim. See e.g. Dixit (1993) or Dixit and

Pindyck (1994).
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The intuition for why the step-up feature always destroys firm value, given no

problems regarding risk-shifting and asymmetric information are present, is that

the step-up bond increases the coupon obligation at a time when the firm gener-

ates lower cash flows and thus rather wants to decrease its debt burden than to

increase it. As a consequence, the existence of step-up bonds cannot be explained

within this basic set-up and we need to incorporate additional model features. As

mentioned above, agency conflicts and asymmetric information might be motives

for the optimal use of a step-up bond.

3 Agency Conflicts

3.1 Optimal Step-up Bond Design

In this section, we assume that the firm has the possibility to change the in-

vestment program. More precisely, in line with most of the literature on asset

substitution,13 we consider the case that the manager-owners of the firm have a

unique, irreversible opportunity to alter the risk profile of the assets in place in

the sense that the volatility of the cash flow process can be increased from σ to

σH , while all other parameters remain unaffected.

In the case of straight debt, we know from the basic Leland (1994) model that a

higher volatility σH ceteris paribus results in a lower firm value. However, from

the perspective of the equity holders only, an increase of the risk is desirable be-

cause σH increases the equity value due to the option-like nature of their claim,

or in more technical terms, due to the convexity in the state variable. This phe-

nomenon is known as the risk incentive or asset substitution problem.

Absent any possibility for debt holders to discipline or to put sanctions on the

manager-owners, the latter will immediately increase the risk after the debt is

issued. This risk-shift, however, will be anticipated by the debt holders and thus

the firm is only able to place its debt issue at the unfavorable high risk terms.

Obviously, the firm would be better off and could add firm value, if this agency

conflict could be mitigated. In what follows, we explore the capability of step-up

bonds to resolve this conflict.

We formalize the idea of a risk-shift by introducing another threshold xσ at

13 See e.g. Leland (1998), Ericsson (2000) or Flor (2006).
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which the manager-owners change the cash flow process from the low to the high

risk. Apparently, if a firm has a rating-trigger step-up bond outstanding, the

barrier xσ at which the firm increases the risk must be above or equal to the

rating-trigger barrier xT . This is a consequence of the fact that after a debt

issuance the firm acts in favor of the equity holders. Since the firm effectively

has a straight bond with coupon δc outstanding once the cash flow hits xT , the

firm will definitely increase its risk at this barrier as long as it has not done so

before. Therefore, we can restrict ourselves to the case xT ≤ xσ. With analogous

notation, we can express the equity value as

St = (1 − τ)Et

[

∫ Tσ

t

e−r(s−t)(xσ
s − c) ds +

∫ TT

Tσ

e−r(s−t)(xσH
s − c) ds

+

∫ Tb

TT

e−r(s−t)(xσH
s − δc) ds

]

,

where Tσ = inf{s; xs = xσ} and the notation xσH indicates that the higher

diffusion parameter is involved. Evaluating the above expression and the corre-

sponding expression for the debt value, we find

S0 = (1 − τ)
{

(

x0

r − µ
−

c

r

)

−

(

xb

r − µ
−

c

r

)(

x0

xσ

)β (
xσ

xb

)βH

−

(δ − 1)c

r

[

(

x0

xσ

)β (
xσ

xT

)βH

−

(

x0

xσ

)β (
xσ

xb

)βH ]}

(7)

D0 =
c

r
+
(

L(xb) −
c

r

)

(

x0

xσ

)β (
xσ

xb

)βH

+

(δ − 1)c

r

[

(

x0

xσ

)β (
xσ

xT

)βH

−

(

x0

xσ

)β (
xσ

xb

)βH ]

, (8)

where βH indicates that the high risk σH is involved. Note further that according

to (6) the optimal default boundary depends on β. Since the risk-shift occurs

before the default threshold is attained, xb in the above expressions is determined

using βH rather than β.14

Note that it is a priori not clear whether
(

x
xσ

)β (
xσ

xH
b

)βH

will be greater or smaller

than
(

x
xb

)β

. On the one hand, due to the higher risk after a risk-shift, the thresh-

old xH
b will be attained faster. On the other hand, because the default threshold

14 In order to be precise, we should write this as xH
b . However, to ease notation, we omit the

superscript if no explicit reference is needed.
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is determined endogenously, xH
b is lower than xb, so that the net effect is a priori

undetermined.

To determine the optimal design of a step-up bond in the presence of a risk-

shifting possibility, the firm faces a similar optimization problem as in (5), i.e.

the firm value is maximized with respect to the step-up bond features (c, δ, xT ).

The difference is that not only the default barrier xb is set by the firm in order

to maximize the equity value after debt issuance but also the risk-shifting barrier

xσ, because a risk-shift is not contractible. The firm value follows from the sum

of (7) and (8). These considerations result in the following optimization problem:

max
(c,δ,xT )

V (c, δ, xT , x∗
b , x

∗
σ)

s.t. (9)

(x∗
b , x

∗
σ) = arg max

xb,xσ

E(c, δ, xT , xb, xσ).

This formulation of the optimization problem differs in two important points from

the model in Bhanot and Mello (2006): First, we address the problem of optimal

security design, in the way that the step-up design must be the outcome of max-

imizing the firm value with respect to the triple (c, δ, xT ). From our perspective,

this is the reasonable notion, since these bond characteristics are contractible. In

contrast, Bhanot and Mello (2006) proceed in the following way. They fix the

amount of debt raised through a bond without a step-up provision, and examine

the effect on the equity value if the same amount of debt is raised through a debt

issue that includes a step-up feature. This approach, however, cannot solve the

optimal security design problem in general.15

Second, we allow for a risk-shift at an arbitrary point in time, i.e. we consider an

endogenous risk-shifting policy by ex post equity holders. Since the risk-shifting

policy is observable but not contractible (otherwise we would not have a mean-

ingful agency conflict), it acts as a constraint to the optimization problem. In

Bhanot and Mello (2006) the risk-shifting policy is exogenously restricted, and

can only occur immediately after a bond issue.

To solve the optimization problem in (9), we already clarified the optimal

solution of xb in the previous section, so it remains to be shown how the risk-

15 Work by Silva and Pereira (2007) suffers from a similar drawback. They only solve a one-

dimensional maximization problem.
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shifting barrier is optimally set. To this end, it is helpful to rewrite the equity

value in (7) as follows:

S0 = (1 − τ)
(

x0

r−µ
− c

r

)

− (1 − τ)
(

x0

xσ

)β (
xσ

xT

)βH

· Q, (10)

with: Q ≡

(

c
r
(δ − 1) +

(

xT

xb

)βH
(

xb

r−µ
− δc

r

)

)

.

Note that Q is independent of the risk-shifting strategy xσ. Thus, the maximiza-

tion of the equity value S in xσ is equivalent to the maximization (minimization)

of the factor
(

x
xσ

)β (
xσ

xT

)βH

given that Q is negative (positive). One can easily

show that
∂

∂xσ

(

x

xσ

)β (
xσ

xT

)βH

> 0

holds. Apparently, the earlier the firm increases the risk of the cash flow process

(i.e. xσ is higher), the earlier a given barrier xT is hit. As a consequence, we can

directly derive the optimal solution for xσ as

xσ =











x0 if Q < 0

xT if Q > 0

[xT , x0] if Q = 0

. (11)

The optimal risk-shifting policy is to switch to the more risky investment either

instantaneously or to wait until the trigger threshold is attained. The result

has an intuitive interpretation. The term Q is the sum of the present value of

the additional coupon payment in perpetuity minus the value of the option to

default conditional on arriving at the level xT . If the absolute value of the option

exceeds the value of the additional coupon payment then Q < 0 and it is optimal

for equity holders to switch immediately to the high risk strategy. In that case

the disadvantage from additional coupon payments is only moderate relative to

the advantage given by the option to voluntarily default. On the other hand, if

the value of the additional coupon payment exceeds the absolute option value,

then Q > 0 and equity holders will find it optimal not to increase the risk until

the trigger threshold xT has been hit. Note that Q itself depends on the terms

of the step-up bond (c, δ, xT ). For notational convenience, we will call bonds for

which a risk-shift is not optimal before xT , i.e. Q > 0, as bonds that satisfy the

risk mitigation property.

We can always find a design of step-up bonds so that the risk mitigation property

is satisfied, while also different designs exist for which the risk mitigation property
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does not hold. With a step-up factor δ close to one, the step-up property is not

very pronounced and the firm has no incentive to prevent an increase of the risk

to avoid additional coupon payments. Formula (6) for the optimal default barrier

confirms that in this case Q is always negative. Conversely, if the step-up factor δ

and the trigger barrier xT are sufficiently high, the step-up feature is very severe.

Thus, it is plausible that the firm wants to prevent a step-up trigger which implies

no voluntary risk-shift. In this case, Q is positive because the factor
(

xT

xb

)βH

tends

to zero but the first term c
r
(δ − 1) is very large. We summarize these findings as

Proposition 2 (Endogenous risk-shifting policy) If a firm has an arbitrary rating-

trigger step-up bond outstanding and manager-owners have a unique irreversible

possibility to change the risk from σ to σH > σ, they will either increase the risk

promptly or wait until the cash flow process x hits the rating-trigger barrier xT .

Other risk-shifting strategies xσ with xT < xσ < x0 are never optimal.

If the asset substitution problem is to be solved by the issue of a step-up

bond, proposition 2 tells us that the terms of the bond have to be set such that

Q ≥ 0. At Q = 0, where the manager-owners are indifferent with respect to the

timing of the risk-shift, we assume that they act in favor of the firm value so that

xσ also equals xT .

Figure 1 visualizes the part of the (δ, xT )-space (given some arbitrary coupon

c) for which Q is positive or negative. The dashed line indicates all trigger bar-

riers xT which are equal to the default threshold xb. Thus, this line excludes the

region on the right side from this line because for those pairs (δ, xT ) the step-up

feature is not relevant as the default barrier xb is above the trigger barrier xT .

In the region below the convex solid curve, the risk mitigation property is not

satisfied, i.e. the pairs (δ, xT ) imply Q < 0. In other words, for a given xT , the

step-up factors δ are too low to provide a sufficient incentive for the firm to post-

pone a risk-shift. Accordingly, for a given δ, the xT in that region are too high

to be incentive compatible.

Consequently, the remaining shaded region contains all feasible, incentive com-

patible combinations of xT and δ, which might be candidates for the optimal

design of the step-up bond. Appendix A shows that the optimal design of a

step-up bond must consist of pairs (δ, xT ) from the boundary indicated by the

bold section of the convex curve. An intuitive explanation for the fact that there

is no interior solution in the shaded region is as follows: Since the step-up of the

13



Figure 1: Critical Step-Up Barrier xT (δ) and Risk Mitigation Area

The diagram shows the combinations (δ, xT ), which satisfy the risk mitigation property,

i.e. Q ≥ 0 holds, as the grey shaded area. The other combinations (δ, xT ) either violate the

risk mitigation property (xT is below the convex function xT (δ) for those δ) or the trigger

barrier xT would exceed the default barrier xb (xT is below the dashed line for those δ)

which contradicts a reasonable step-up design. The other parameter values are: x0 = 1,

c = 2, σ = 0.2, σH = 0.3, α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.5

0.6

0.7

0.8

0.9

1.0

δ

xT

Q > 0

Q < 0

xT < xb

coupon has a negative effect on the firm value, as long as the riskiness of the

assets is given, the firm wants to keep the step-up factor on a level that is as

low as possible for a given trigger barrier xT which implies Q = 0. From this

equality we can deduce a relation between a minimum xT and δ that satisfies the

risk mitigation property, i.e.

xT (δ) = xb

(

c(µ − r)(δ − 1)

r xb + c(µ − r)δ

)1/βH

= xb(c, δ)
(

(βH − 1)(1 − δ)δ−1
)1/βH (12)

Note that the trigger threshold is a multiple of the default threshold xb which

itself is a function of c and δ.

Figure 1 also shows that the relation between the minimum xT and δ is negative,

i.e. for a given combination of xT and δ, a lower xT can only be achieved by

increasing δ. This is plausible, since a lower xT means that the risk mitigation

property is supposed to apply for a longer time. Thus, the step-up feature δ, that

prevents the risk-shift, must be more pronounced.

Equation (12) provides the solution to the incentive constraint, and is key to

determining the optimal firm value. Let us denote by S the set of pairs (δ, xT )

that lie on the bold section of the graph xT (δ) in figure 1. S is characterized by
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a minimum and a maximum step-up factor δ. A δ above the minimum step-up

factor δmin ensures that the step-up factor is high enough so that the firm has

no incentive to increase the risk before the cash flow x hits the barrier xT . A δ

below the maximum step-up factor δmax implies that a risk-shift (and accordingly

a step-up) in fact takes place before the firm defaults. We can define the set S

as follows:

S = {(δ, xT );∀ δ′ ∈ (δmin, δmax) : xT = xT (δ′)} (13)

where δmin is the smallest δ such that xT ≤ x0:

δmin = min{δ′; xT (δ′) ≤ x0}

and δmax is the highest δ such that xT ≥ xb:

δmax = max{δ′; xT (δ′) ≥ xb}.

We will give a precise characterization of δmin and δmax when analyzing whether

a step-up bond is worthwhile for a firm or not.

The important property that a step-up bond can add firm value, if and only if

the solution (δ∗, x∗
T ) to the maximization problem lies within the set S, reduces

the problem to two dimensions: the coupon c and the step-up factor δ. This is

due to the fact that the choice of the step-up factor δ uniquely determines the

trigger barrier xT (δ). The remaining determination of the solution is conceptually

straightforward but algebraically tedious and follows from first- and second-order

conditions. Appendix B contains the corresponding details. The optimal step-up

design is characterized by the following closed-form representations, which we

summarize in

Proposition 3 (Optimal design) Given that a step-up bond is optimal to mitigate

the asset substitution problem, the optimal design (c∗, δ∗, x∗
T ) of a rating-trigger

step-up bond is the solution to the optimization program (9) and given by the

following closed-form formulae:

c∗ =
(β − 1)

β

r

(r − µ)

(

1 −
βH

β

)−1/βH

x∗
T , (14)

δ∗ =
β (βH − 1)

βH (β − 1)
, (15)

x∗
T = x0

((α

τ
− α + 1

)

(βH − β)
)1/β

. (16)
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Proposition 6 in the next section will give a formal characterization for which

firms a step-up bond is optimal. Note, that plugging in c∗ and δ∗ in (6) yields

the optimal default threshold

x∗
b =

(

1 −
βH

β

)−1/βH

x∗
T . (17)

The optimal firm value as of time t = 0 simplifies to

V ∗
0 =

(1 − τ)x0

r − µ
+

τ

r − µ
x∗

b . (18)

The representation for the optimal firm value — given that a step-up provision is

optimal — allows for a remarkable interpretation. This is because the represen-

tation for the firm value as in (18) also applies to the case of straight debt, the

only difference being that the default barrier x∗
b has a different size. Interestingly,

in the case of straight debt the default barrier, given as

x∗
b,plain = x0

(

β
(

α −
α

τ
− 1
))1/β

,

is lower than the default barrier in the case of a step-up. Therefore, we can

economically interpret the cost from the risk-shifting possibility as a loss of the

firm value which is directly revealed by a different default barrier. Moreover,

it is well-known that a firm having an infinitely high risk σH cannot add firm

value with a straight bond (see e.g. Leland (1994)) so that the optimal firm value

equals the value (1 − τ) x0

r−µ
of an unlevered firm. The formulae for the optimal

default barrier x∗
b,plain together with the representation for the optimal firm value

V ∗
0 confirm this effect, because β tends to zero for an infinitely high risk. In the

case that the firm uses a step-up bond and can increase its risk σH infinitely high,

i.e. βH → 0, the optimal default barrier x∗
b , however, is strictly positive

lim
βH→0

x∗
b = x0

(

e ·
(α

τ
− α + 1

)

(−β)
)1/β

.

Thus, the optimal firm value V ∗
0 with a step-up bond exceeds the firm value with

a straight bond even in this extreme situation where the firm can increase its risk

arbitrarily high.

As a result of the closed-form representations for the optimal design of the step-

up provision δ∗ and x∗
T , we can derive the following testable implications, which

we state as
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Corollary 4 If a firm optimally uses the step-up provision to counter the risk-

shifting problem, a more pronounced risk-shifting problem, i.e. a higher σH , results

in a higher step-up factor δ∗ and a lower trigger barrier x∗
T .

This claim directly follows from the derivatives of (15) and (16) for βH tak-

ing into account that β is negative and a strictly increasing function in σ. The

intuition for this implication is as follows: If the risk-shifting problem is more

pronounced, the firm wants to postpone the risk-shift for a longer time which re-

sults in a lower optimal trigger barrier x∗
T . To ensure that a risk-shift can in fact

be prevented, a higher step-up factor is required in order to provide the equity

holders with the incentive to keep the risk on the lower level σ.

From the optimal triple (c∗, δ∗, x∗
T ), it is a priori not clear whether the optimal

step-up design can mitigate the agency costs so strongly that it increases the firm

value relative to a straight bond. The step-up feature is attractive for the firm if

and only if the optimal bond design (c∗, δ∗, x∗
T ) results in a feasible relationship

between the default barrier x∗
b , the trigger barrier x∗

T , and the initial cash flow

x0, i.e. x∗
b < x∗

T < x0. This relationship is equivalent to the condition that the

step-up factor δ lies in the interval (δmin, δmax).

In what follows, we determine the conditions for which δ lies within the interval

(δmin, δmax) and thus, a step-up bond adds firm value.

Turning to δmax first, note that from (12), xT (δ) is a multiple of xb(δ), where

the multiple depends on δ and βH and can be larger or smaller than one. However,

a multiple smaller than one would imply that xT < xb which is not consistent

with our definition of a step-up bond. Thus, we can deduce a maximum for

δ which satisfies the risk mitigation property and results in an optimal trigger

threshold xT ≥ xb, denoted by δmax as

δmax =
βH − 1

βH

.

Note that δmax is determined by the intersection of the dashed graph with the

solid line in figure 1 and is independent of c.16 Comparing δmax with the optimal

δ∗, we can write

δ∗ =
β (βH − 1)

βH (β − 1)
=

β

(β − 1)
δmax < δmax.

16 It can also be shown that the function xT (δ) has its minimum in δmax. This property further

justifies the notion of a maximal δ, since although a higher δ is feasible, it is not possible to

thereby decrease xT .
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Therefore, the upper boundary is never violated in the optimum. Alternatively,

the solution for the optimal default barrier (17) indicates that the default bar-

rier cannot exceed the optimal trigger barrier because the term
(

1 − βH

β

)−1/βH

is

always below one. This technical property has an important economic interpre-

tation and we highlight this result as

Corollary 5 Every firm that optimally uses a step-up bond does not fully exclude

a risk-shift but admits a region (x∗
b ; x

∗
T ) with positive length in which the risk of

the firm’s assets is high.

Next, turn to δmin. In general, this should be the solution of xT (δ) = x0 in

δ with xT (δ) given as in equation (12). Unfortunately, this equation cannot be

evaluated algebraically for an arbitrary coupon c. However, since we are only

interested in the optimal triple (c∗, δ∗, x∗
T ), we can plug in the optimal coupon

c∗(δ) given any δ in (12). The corresponding equation has an algebraic solution

given by

δmin =
βH(β − 1)(ατ − α − τ) − τ

βH(β − 1)(ατ − α − τ)
.

In general, as long as the the optimal step-up factor is above δmin, the optimal

bond design is more favorable than a straight bond. While we could establish

that the inequality δ∗ < δmax for the upper barrier always holds, the inequality

δ∗ > δmin does not need to be valid in general. We can write δmin as

δmin = δ∗ ·
βH(β − 1)(ατ − α − τ) − τ

β(βH − 1)(ατ − α − τ)
,

from which we can deduce an equivalent condition for δmin < δ∗. This condition

simplifies to

βH − β >
τ

(α + τ(1 − α))
. (19)

Since the inequality involves all relevant parameters, it completely characterizes

the conditions under which a step-up provision can mitigate the agency conflict in

the sense that it increases firm value. These fundamental findings are summarized

in the next proposition.

Proposition 6 (Optimal Use of Step-Up Bonds for Risk-Shifting) Suppose that

a firm has an initial investment risk of σ and a unique, irreversible opportunity

to increase the risk to σH , which is observable but not contractible. An optimally

designed step-up bond can add firm value relative to a straight bond, if and only

if condition (19) holds.
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It is instructive to see for which pairs (σ, σH) a step-up feature is worthwhile

for the firm, i.e. to determine the conditions on (σ, σH) under which it is value-

enhancing to solve the agency conflict through issuing a step-up bond. For this

purpose, we have to translate condition (19) into a corresponding relation for the

risk parameters. Figure 2 indicates when a step-up provision is attractive. The

convex function σ̄H(σ) refers to the case that condition (19) holds with equality

and is drawn as the solid graph. Since βH − β strictly increases with σH , condi-

tion (19) is always satisfied for σH > σ̄H(σ). Thus, for all risk levels σH above

the critical level σ̄H(σ), a step-up feature is attractive for the firm, while for risk

levels σH < σ̄H(σ) it is not. Thus, the shaded region contains all pairs (σ, σH)

for which a step-up bond is able to mitigate the agency problem.17

Figure 2: Optimal Use of Step-Up Bonds

The diagram shows the combinations (σ, σH) as grey shaded area, for which firms optimally

issue step-up bonds. The dotted line σH = σ indicates the minimum value for the feasi-

ble high risk σH The other parameter values are: α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.
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The first important outcome from this figure is that for firms with a sufficiently

low initial risk σ, a step-up bond is always worthwhile as long as the possibility

to (at least slightly) increase the risk σH − σ > 0 exists. Interestingly, as the

initial risk σ is increased, the minimum risk σ̄H(σ) after a risk-shift for which a

step-up bond is still attractive increases more than proportionally. An intuitive

explanation for this result is as follows: The value of a firm with straight debt is a

convex and declining function in the business risk σ. Thus, a risk-shift primarily

17 The dashed straight line indicates σH = σ. Obviously, the region below this line is not

relevant, since σ > σH is not consistent with the notion of asset substitution.
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hurts firms with a low initial risk σ. For this reason, a step-up feature, that

prevents a risk-shift, is especially chosen by low-risk firms.

It can even be shown that there exists a limit for σ beyond which step-up bonds

are never optimal. To formally prove this, note that β(σ) < 0 is monotonically

increasing in σ towards a limit equal to zero. Therefore, the maximum initial β

such that condition (19) is satisfied, is given by the critical value β:

β = −
τ

(α + τ(1 − α))
,

which in turn determines the maximum σ. This critical value follows from equa-

tion (19) with βH = 0. In line with intuition, once the initial risk σ is very high,

it is not worthwhile anymore to implement any step-up feature. This is because

the potential to prevent a firm value decline due to a risk-shift is relatively low

but the costs in form of a loss of the firm value from the step-up feature are still

present. We summarize these findings as

Corollary 7 Firms can increase the firm value with a step-up bond relative to

the use of a straight bond in the presence of a risk-shifting possibility in two

cases: (i) The initial risk of the firm is sufficiently low. (ii) The risk-shifting

possibility, σH − σ, is very pronounced and the initial risk σ is below a threshold

σ. Conversely, if the initial risk is too high, i.e. σ exceeds σ, then a step-up bond

is never worthwhile for the firm independent of the risk-shifting option.

3.2 Illustration of Optimal Step-up Features

In this section we illustrate the results with a numerical example. Since the firm

value and the step-up features are homogenous of order one in x0, we normalize

x0 = 1 without loss of generality. For the parameters, we choose a base case

scenario of: µ = 0.05, r = 0.07, α = 0.15 and τ = 0.35 which is broadly consistent

with previous literature.18 Suppose the initial investment risk is σ = 0.2 and the

high-risk investment is σH = 0.3.

Table 2 and figure 3 show the numerical results. If the firm issues plain debt

18 See e.g. Goldstein et al. (2001), Huang and Huang (2002), Morellec (2004), Hackbarth et al.

(2007) and Bhanot and Mello (2006). The parameter choices are close to Bhanot and Mello

(2006) to enable direct comparison, except for α, i.e. bankruptcy costs. While we choose

α = 0.15, which is broadly consistent with empirical evidence according to Andrade and

Kaplan (1998) or more recently Strebulaev (2007), proportional bankruptcy costs in Bhanot

and Mello (2006) amount to 60%.
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Table 2: Optimal Firm Values and Contract Design

The table reports the optimal firm value and the corresponding bond design for a straight

bond with low risk σ = 0.2 and high risk σH = 0.3. As a further financing possibility a

step-up bond is considered where the firm has the possibility to shift its risk from σ to σH .

The other parameter values are: x0 = 1, α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.

Bond type c∗ δ∗ x∗
T x∗

b Firm value Agency costs

Plain (low risk) 2.76 - - 0.58 42.63 -

Plain (high risk) 2.91 - - 0.47 40.75 1.88

Step-up (risk-shift) 2.33 1.29 0.79 0.48 41.06 1.57

and were able to contract upon the risk choice, the optimal firm value is 42.63

representing the first-best solution. Since the risk policy is not contractible,

investors anticipate the incentive of manager-owners to switch to the high risk

opportunity immediately after the issue of plain debt. Therefore, in the case

of a plain debt issue, the optimal firm value is only 40.75 as a result of a risk-

shift initiated by the owner-managers. The associated agency costs from the

risk-shifting problem can be measured as the difference between the optimal firm

value in the first-best case without risk-shifting possibility and the optimal firm

value in the case for the high risk σH . In the example, the agency costs amount

to 1.88. With the issuance of an optimal step-up bond, it is possible to reduce

these agency costs to 1.57, which is a reduction of roughly 16.5%. The optimal

step-up factor turns out to be 1.29, i.e. an increase in the coupon rate of 29% at

a trigger level of 0.79.

Figure 3 shows the firm value for different financing cases as a function of the

high-risk opportunity σH . In particular, this graph indicates the optimal value of

a firm with straight debt without the risk-shifting possibility Vplain(σ), the optimal

value of a firm with straight debt Vplain(σH) with the risk-shifting possibility, and

the optimal value of a firm with a step-up bond. This graph indicates the agency

costs of the risk-shifting problem as the difference

Vplain(σ) − max
(

Vplain(σH), Vstep−up

)

between the optimal firm value without the risk-shifting possibility and in the

presence of the risk-shifting possibility. If the risk-shifting problem is present,

the optimal firm value is either the value Vplain(σH) of a firm with straight debt
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Figure 3: Optimal Firm Values for Different Financing Possibilities

The diagram shows three optimal firm values as a function of a high risk σH . The first

firm value (dotted line) Vplain(σ) refers to a firm that uses straight debt and cannot alter

its risk. In the second case, the firm can increase its risk to σH so that Vplain(σH) (dashed

line) is the optimal firm value of a firm with straight debt and high risk. The third firm

value Vstep−up (solid line) is the result from an optimal financing with a step-up bond where

a risk-shifting possibility from σ to σH is given. The other parameter values are: x0 = 1,

σ = 0.2, σH = 0.3, α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.
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and high risk or the optimal firm value Vstep−up with a step-up bond. As figure 3

reveals, higher values for σH (at a constant σ = 0.2) imply higher agency costs

and can be interpreted as a more pronounced agency conflict. The step-up bond

is able to achieve a proportionally higher mitigation of agency costs, when the

agency conflict becomes more severe. In this numerical example, a step-up bond

is not optimal for σH below σ̄H = 0.239, at which point the solid line (Vstep−up)

smooth-pastes to the dashed line (Vplain(σH)).

4 Asymmetric Information

In the previous section, we have analyzed the possibility of step-up bonds to mit-

igate agency conflicts. Now, in this section, we turn to the competing hypothesis

for the use of rating-trigger step-up bonds which is the presence of asymmetric

information problems. Therefore, we will analyze the possibility for firms to use

step-up bonds to convey information about the true business risk to the capital

market. Since we know from the previous section that a step-up feature is pri-
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marily painful for high-risk firms, a step-up feature might be an attractive device

for a low-risk firm to credibly distinguish itself from a high-risk firm. Given that

a separating equilibrium exists, we want to figure out the optimal design of the

step-up feature. This, in turn, will enable us to identify remarkable differences

relative to the optimal step-up bond design when agency problems are present.

For our analysis we consider two types of firms, each having a cash-flow pro-

cess following the same dynamics as described in (1), except that type L has

diffusion parameter σ, while the type H firm has a diffusion parameter σH with

σH > σ. Thus type L is a low-risk firm, while H is the high-risk firm.19 The

potential investors know that every firm can be of type L or H, but they have

per se no indication about a firm’s true type. The owner-managers of the initially

non-levered firm, however, know the true type which causes a typical problem

of asymmetric information. Since we focus on the ability of step-up bonds to

signal the true type, we abstract from further incentive conflicts such as the risk-

shifting possibility addressed in the previous section. After an issue of a step-up

bond, the owner-managers obtain the proceeds from the debt issue in form of

a special dividend and they might still hold the equity of a now levered firm.

To determine the firm value or even more precisely the wealth obtained by the

initial owner-managers, the use of the equity position is crucial. In general, the

two alternatives are to hold the shares or to sell them. We can state right from

the outset that in the extreme case that the owner-managers sell their shares to

outsiders immediately after the debt issuance, a separating equilibrium cannot

exist. Apparently, in this case the wealth obtained by the owner-managers equals

the equity and the debt value according to the perception of the capital market.

Assume that a bond design for good firms existed that could signal a more fa-

vorable firm value so that the sum of the values of equity and debt (according

to the market perception) increased. Then every other arbitrarily bad firm could

also choose this design and the owner-managers would obtain the same wealth

as the owner-managers of the good firm. Therefore, every firm could mimic a

good firm so that a credible bond design that signals favorable information about

the firm does not exist. The formal reason for this finding is the fact that the

19 Manso et al. (2007) construct the information asymmetry with respect to the drift term µ

of the diffusion process. Thus, in their signaling game, a high-productivity type tries to

separate itself from a low-productivity type. Since the crucial impact on firm value is due

to the β factor, whereby β is an increasing function in σ and a decreasing function in µ,

both formulations of the information asymmetry are qualitatively equivalent.
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Spence-Mirrlees condition does not hold, which requires that the marginal costs

for sending a signal differ between the two types.20 This is clearly violated be-

cause the owner-managers obtain the same payoff irrespective of the firm’s true

type.21

However, in the case that some of the shares are kept by the owner-managers, the

step-up feature might be able to act as a signalling device. To analyze this im-

portant characteristic of step-up bonds, we assume for simplicity that the owner-

managers hold their stocks infinitely long so that the market perception is not

relevant for the equity value.22

We will use the following notational convention: Cm
i,j denotes a claim (firm value

or debt value) on the cash-flow of a firm that is actually of type i ∈ (L,H), but

which is perceived by outsiders as being of type j ∈ (L,H), while offering a con-

tract (i.e. sending the message) m ∈ {(c, δ, xT ); c ≥ 0, δ ≥ 1, xb < xT ≤ x0}. Note

that m = (c, 1, x0) describes a plain bond, while we indicate a (yet undetermined

optimal) step-up bond by m = (c, δ, xT ).23 Since the relevant equity value held

by the owner-managers is evaluated with the knowledge of the true type, the

equity value Em
i will carry only one subscript which refers to the true type of the

firm. Like for the other claims, the superscript m indicates the bond design. For

example, D
(c,δ,xT )
H,L denotes the debt value of a high-risk firm being perceived as a

low-risk firm that has issued a step-up bond. The firm value from the perspective

of the owner-managers is

V m
i,j = Em

i + Dm
i,j.

This objective indicates that for a given market perception j, the true type of

the firm still matters as the equity value Em
i is driven by the true type i rather

than the market perception j, while the debt position Dm
i,j is priced according to

the market perception j. Therefore, the costs for a low-risk firm from issuing a

step-up bond differ from those of a high-risk firm (and hence, the Spence-Mirrlees

condition is fulfilled).

20 For the Spence-Mirrlees conditions, see e.g. Bolton and Dewatripont (2005).
21 The above reasoning is consistent with results by Nachman and Noe (1994) who find that

a (plain) debt contract is optimal to minimize mispricing losses if conditions are such that

separating equilibria cannot exist.
22 Manso et al. (2007) consider traded equity. However, they assume that the information

asymmetry is dissipated immediately after securities are issued. (“The growth rate becomes

public knowledge after the firm raises capital.” Manso et al. (2007), p. 20.)
23 Note that a continuum of possible messages exist, since the only restrictions on (c, δ, xT ) are

given by c ≥ 0, δ ≥ 1, xb < xT ≤ x0.
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To analyze the outcome of a signalling game, we apply the concept of a per-

fect Bayesian equilibrium which is mainly characterized by the fact that posterior

beliefs are determined through Bayes’ rule. We denote beliefs about the true type

i ∈ (L,H), conditional on the information content from the choice (c, δ, xT ) of the

bond contract, as π(i|(c, δ, xT )). The signals, i.e. the bond contract characteris-

tics, are chosen such that they maximize the objective function of the informed

party. Posterior beliefs about out-of-equilibrium actions are not restricted and

can take on any value in [0, 1]. The objective function of the informed party is

the expected firm value:

E[V
(c,δ,xT )
i ] = π(L|(c, δ, xT )) · V

(c,δ,xT )
i,L + π(H|(c, δ, xT )) · V

(c,δ,xT )
i,H .

In general, possible equilibria in a signalling game can be classified into separat-

ing, pooling, or semi-separating equilibria, and it is well-known that the kind of

equilibrium depends on the actual conditional beliefs of the uninformed party.

Since it is our focus to analyze whether step-up bonds are a device to credibly

signal the firm’s true type, we restrict our interest to separating equilibria of

the signalling game. Thus, it is natural to consider a situation, where each type

of firm chooses a different message in equilibrium. Therefore, we consider the

following posterior beliefs:

π(L|(c, δ, xT )) = 1, π(H|(c, δ, xT )) = 0.

If the uninformed party receives the message (c, δ, xT ), with δ > 1 and xb < xT <

x0, i.e. it observes that the firm offers a step-up bond, she beliefs the firm to

be of type L. For any other contract design (c′, δ′, x′
T ), beliefs are such that the

uninformed party considers the firm to be of type H, i.e.

π(L|(c′, δ′, x′
T )) = 0, π(H|(c′, δ′, x′

T )) = 1.

From the proof of proposition 1, we know that a step-up feature is always costly

in the sense that it decreases the firm value. Thus, if the H type considers to

choose a different step-up design than (c, δ, xT ), only a plain consol bond can ever

be optimal, i.e. (c′, δ′, x′
T ) = (c, 1, x0), and we can restrict our attention to the

situation where only two contracts are offered.

A separating equilibrium is then characterized by the fact that by taking into

account this posterior beliefs, a firm actually issues a step-up bond only if it is
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type L, while the type H firm actually prefers straight debt, so that the beliefs

are therefore justified.

The posterior beliefs, as specified above, are intuitively plausible. The step-up

feature is always costly in the sense that it decreases the firm value. For a L type

firm, it might be worthwhile to take on this cost in order to be recognized as

such, while the H type firm will only have an incentive to mimic the behavior of

the L type as long as the benefit of more favorable debt terms will outweigh the

costs associated to the step-up provision. As long as this net benefit is positive,

the H type firm will mimic the issuing behavior of the L type firm and benefit

from the mispricing gain. Only a step-up design such that this net benefit turns

negative can be considered as a candidate equilibrium outcome. Therefore we

must impose the incentive compatibility condition

V
(c,1,x0)
H,H ≥ V

(c,δ,xT )
H,L

for the H type, and likewise

V
(c,δ,xT )
L,L ≥ V

(c,1,x0)
L,H

for the L type. Since the issuance of plain debt will be considered as a signal

that the firm is of type H, the coupon rate in that case is determined through

the parameter σH , i.e. (c∗(σH), 1, x0).

In general, the incentive compatibility constraints determine the set of sepa-

rating equilibria, and this set might contain many of them. From the perspective

of the L type firm, it is natural to consider the problem to find some optimal

equilibria, where optimality in our setup refers to the maximization of the firm

value (or more precisely, the wealth obtained by the former firm-owners). In

this sense, we can summarize the optimal step-up bond design problem under

asymmetric information as the following optimization program:

max
{c, δ, xT }

(

V
(c,δ,xT )
L,L

)

s.t. (20)
{

V
(c,δ,xT )
L,L ≥ V

(c,1,x0)
L,H

V
(c,1,x0)
H,H ≥ V

(c,δ,xT )
H,L

The L type firm tries to achieve the highest possible firm value, conditional on

the fact that a separating equilibrium can be achieved, where the design of the
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bond issue perfectly reveals the true type.24 Therefore, the incentive compatibil-

ity inequalities act as constraints to the maximization problem.25 If a solution

(c, δ, xT ) with δ > 1 does not exist, the L type firm issues a plain bond and is

perceived as being of type H.

Whenever an equilibrium exists, the incentive condition for the H type firm

must be binding. Otherwise, the design of the step-up bond could be (marginally)

changed in a neighborhood around (c, δ, xT ) so that the incentive condition of

the H type firm is still valid. In particular, a higher step-up barrier xT can be

implemented. Since a higher xT increases the firm value V
(c,δ,xT )
L,L of the L type

firm due to higher tax benefits, the initial step-up bond design (c, δ, xT ) before

the increase of xT cannot be optimal.

An analysis of the optimization program brings up two problems: (i) Under

which conditions do separating equilibria exist. (ii) Given that these conditions

are fulfilled, i.e. a separating equilibrium exists, what is the optimal design of

(c, δ, xT ). In general, a separating equilibrium can exist but does not need to ex-

ist. In particular, under asymmetric information, we obtain the following result

for the use of step-up bonds that contrasts remarkably the equilibrium predic-

tions under the asset substitution hypothesis. We state this in the following

proposition. The proof is in appendix C.

Proposition 8 (Optimal Use of Step-Up Bonds for Asymmetric Information)

For any arbitrary risk σ of the low risk firm, any corresponding risk σH , with

σH ∈ (σ, σ+ǫ) for a positive and sufficiently small ǫ, allows for the determination

of a separating equilibrium, i.e. the incentive compatibility conditions in (20) are

fulfilled.

This proposition has two important consequences. First, if there is a marginal

24 Note that this formulation of the problem aims not only at establishing a separating equi-

librium (or a set of equilibria) but already tries to single out a specific equilibrium of the

signalling game. Since the market is aware of the optimizing behavior of the firm, this puts

restrictions on their out-of-equilibrium beliefs. Actually, an equilibrium solution of the pro-

gram (20) would satisfy, or would be the one that survives the Cho-Kreps intuitive criterion

(see Cho and Kreps (1987)). This refinement selects a unique pure-strategy equilibrium,

that represents the least-cost separating equilibrium.
25 To be precise, we should also note that, as in the previous section, the condition x∗

b =

arg maxxb
E

(c,δ,xT )
L is a further constraint to the maximization problem, which we left out

to ease notation.
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information asymmetry in the sense that σH is only infinitesimally higher than

σ, a separating equilibrium, in which a step-up bond perfectly reveals the true

type, is possible. Second, this proposition also implies that there does not exist

an upper boundary on σ beyond which a separating equilibrium is never possible,

regardless of σH .

The next section further analyzes the opposing equilibrium predictions for the

design and feasibility of step-up bonds under the case of an agency conflict and

asymmetric information.

In the remainder of this section, we will deal with the second aspect namely the

optimal bond design in a separating equilibrium. Assume that the conditions for a

separating equilibrium are fulfilled, i.e. the incentive compatibility constraints are

satisfied, then we want to determine which choice of the triple (c, δ, xT ) maximizes

the firm value of type L. In principle, one might proceed as follows: Since we know

that the incentive compatibility constraint of the H type binds in equilibrium,

we can take this as an equality, solve it for c, δ, or xT , and plug in the solution in

V
(c,δ,xT )
L,L . However, there does not exist an algebraic solution to V

(c,1,x0)
H,H = V

(c,δ,xT )
H,L

in (c, δ, xT ), since different exponents β, βH are involved additively. Therefore, we

cannot supply closed-form solutions in general. However, we are able to derive an

important qualitative result about the optimal equilibrium step-up bond design.

To state this result in the next proposition, it is helpful to introduce the following

simple notational convention. Denote the coupon rate after a step-up has taken

place as ĉ. Obviously, this is defined as ĉ ≡ δ c.26

Proposition 9 The optimal design of a step-up bond under the condition that a

separating equilibrium exists, i.e. such that the incentive compatibility constraints

in (20) are satisfied, must be such that c → 0, δ → ∞ and 0 < δc = ĉ < ∞.

The proof (which is given in appendix D) relies on an application of the im-

plicit function theorem and shows that for any ĉ the substitution rate dc
dxT

, that

ensures a constant firm value, is smaller for the type L firm than that for the

type H firm. To see how this leads to the stated result, consider some arbitrary

combination (c, ĉ, xT ) such that V
(c,1,x0)
H,H ≥ V

(c,δ,xT )
H,L binds with equality. Then

for any ĉ an increase in xT must be compensated by a reduction in c to keep

the incentive compatibility constraint binding. Because dc
dxT

is smaller for type L

than for type H, this change of xT and c increases the firm value for L. Since

26 Likewise, the notation (c, δ, xT ) is equivalent to (c, ĉ, xT ). A plain bond might be indicated

by (c, 1, x0), or (0, c, x0).
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this property holds for all initial values of c and xT , the optimal choice is such

that c → 0 and xT is chosen as high as possible.

This result is remarkable, since in comparison to the optimal design of the step-

up bond in the presence of the asset substitution problem, it provides an entirely

different equilibrium prediction. We will discuss these aspects in more detail in

section 5.

Table 3 and figure 4 illustrate the optimal step-up design under asymmetric in-

formation by numerical optimization results. As in section 3 we consider the

base case scenario with µ = 0.05, r = 0.07, α = 0.15, τ = 0.35, and σ = 0.2.

The first row in table 3 corresponds to the first-best solution, i.e. the L type

Table 3: Firm Values for Different Types of Financing and Market Perceptions

The table reports firm values, the corresponding bond contracts, and the costs of asymmetric

information when firms use straight debt (c∗(σ), 1, x0) and step-up bonds (c∗, ĉ∗, x∗

T ). The

parameter values are: x0 = 1, σ = 0.2, σH = 0.3, α = 0.15, τ = 0.35, r = 0.07, and

µ = 0.05.

Scenario c∗ ĉ∗ x∗
T x∗

b Firm value AI costs

V
(c∗(σ),1,x0)
L,L 2.76 - - 0.58 42.63 -

V
(c∗(σH),1,x0)
L,H 2.91 - - 0.61 38.19 4.44

V
(c∗,ĉ∗,x∗

T
)

L,L → 0 2.45 0.94 0.51 40.53 2.1

V
(c∗(σH),1,x0)
H,H 2.91 - - 0.47 40.75 0

firm is recognized as such and issues plain debt (V
(c∗(σ),1,x0)
L,L ). However, under

asymmetric information this firm value is not achievable, since investors belief

that plain debt will be issued by H type firms. Given these beliefs, the second

row reports the corresponding results for V
(c∗(σH),1,x0)
L,H . The costs of asymmetric

information (AI) amount to more than 10% of the initial firm value. The third

row (V
(c∗,ĉ∗,x∗

T
)

L,L ) reports results for the firm value of the L type where a separat-

ing equilibrium is established with a step-up bond. As proven in proposition 9,

the optimal initial coupon rate goes to zero, while the step-up factor approaches

infinity such that the optimal coupon rate after the step-up (ĉ∗) assumes a finite

value. The optimal step-up threshold x∗
T is chosen as high as possible so that the

incentive compatibility constraints still bind. Through this step-up design, the

type L firm is able to reduce the AI costs by more than 50%. In the last row

of table 3, results for V
(c∗(σH),1,x0)
H,H are shown. Although the L type firm achieves
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Figure 4: Firm Value Alternatives for an L Type Firm

The diagram shows the firm value V
(c∗,ĉ∗,x∗

T
)

L,L (solid line) obtained with a step-up bond

and the value V
(c∗(σH),1,x0)
L,H (dashed line) an L type firm obtains with a straight bond as a

function of the risk σH of the H type firm. The horizontal dotted line indicates the first-best

solution V
(c∗(σ),1,x0)
L,L (which is independent of σH). The other parameter values are: x0 = 1,

σ = 0.2, α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.
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a separating equilibrium and can improve its firm value relative to its outside

option V
(c∗(σH),1,x0)
L,H , the H type firm value is higher. This is a result which is not

uncommon for the outcome of signalling games.27

Finally, we can see from figure 4 that even for a very small asymmetric informa-

tion problem in the sense that σH is only marginally higher than σ, a step-up

bond can add firm value in a separating equilibrium. This is in contrast to the

results from section 3 regarding the asset substitution hypothesis.

5 Discussion of Equilibrium Predictions

In contrast to Bhanot and Mello (2006), but in accordance with Manso et al.

(2007), we find that step-up bonds can be a device to mitigate the asset substi-

tution problem, as well as to signal favorable firm characteristics. In order to

distinguish which of the two explanations is consistent with empirical evidence,

and to deduce potentially testable hypotheses, it is instructive to compare the

corresponding equilibrium predictions. Such a comparison can be made with re-

27 Koziol (2007) obtains a similar result when outside collateral is used to mitigate problems

of asymmetric information.
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spect to two aspects: (i) The contract design if a step-up bond is optimal, and

(ii) the conditions under which a step-up design is optimal.

Consider aspect (i) first. Table 4 summarizes the equilibrium predictions con-

cerning the optimal step-up design, i.e. the optimal choice of the triple (c, δ, xT ).

If agency problems are present, the discussion in section 3 has shown that the

Table 4: Summary of Equilibrium Predictions

Bond design Asset substitution Signalling

c > 0 → 0

δ Lowest possible δ (for given

xT )

δ → ∞ but finite ĉ > 0

xT Lowest possible xT (for given

δ)

Highest possible xT so that in-

centive conditions hold

step-up bond is optimally designed in a way that the risk-shifting incentives can

be mitigated. In particular, from (10) and figure 1 we know that this is optimally

accomplished if Q(δ, xT ) = 0 holds. As shown in appendix A, the optimal bond

design requires a δ as small as possible for any choice of xT . Likewise, it is opti-

mal to choose a xT as low as possible, for any δ, so that Q = 0 still holds. This

is intuitively plausible. Since the step-up threshold determines the time when a

risk-shift occurs, the firm wants to set this as low as possible. Thus, the optimal

decision about (δ, xT ) balances the benefit from the risk mitigation property to

the associated costs of the step-up feature.

In contrast, if asymmetric information problems are present, we obtain a com-

pletely different optimal step-up design. To achieve a separating equilibrium, the

step-up bond design must be sufficiently costly for the high risk firm such that it

has no incentive to mimic. The step-up design can be costly in different ways, and

proposition 9 has established that the least-cost separating equilibrium from the

viewpoint of the low risk firm (type L) is achieved by setting a step-up threshold

as high as possible, reducing the initial coupon rate to zero, and implementing a

step-up factor that is infinitely high, such that the coupon rate after the step-up

assumes some optimal level.

The intuition for this contrasting optimal step-up design is the following. In

the case of agency problems, the benefit from the step-up bond is to prevent a

risk-shift. The time when a risk-shift occurs is intimately linked to the step-up
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threshold. Therefore, a step-up threshold as low as possible is optimal. In con-

trast, for signalling reasons, the benefit from the step-up bond is to achieve a

separating equilibrium. This can be obtained by imposing costs on the poten-

tially mimicking firm. The same amount of costs can be imposed by very different

choices of (c, δ, xT ). In particular, there is no need to have a low level of xT as

in the asset substitution case. Actually, as discussed above, it is optimal to have

xT as high as possible, while reducing the initial coupon rate to zero. In other

words, a reason for the contrasting step-up design is that in the case of agency

problems the friction occurs within the firm, while for asymmetric information,

the friction occurs between two different firms.

This outcome enables us to draw important conclusions concerning the use of

step-up bonds as observed by empirical evidence. The example in the introduc-

tion (see table 1) as well as data in Lando and Mortensen (2004) and Houweling

et al. (2004) show that the step-up in the coupon rate is on the order of 50 bp, or

roughly 10% of the initial coupon rate. Thus, even without carrying out statisti-

cal tests, the empirical observations of the design of step-up bonds rather favors

the agency conflict hypothesis than the asymmetric information hypothesis.

In what follows, we regard aspect (ii) in order to understand the conditions

under which a step-up bond is worthwhile to mitigate risk-shifting versus asym-

metric information problems. The crucial parameters, that determine if step-up

bonds are optimal are the tax rate τ , the proportional bankruptcy costs α, and

the risk parameters σ and σH . In figure 5, we indicate parameter constellations

for which step-up bonds are feasible as the solid areas in the three-dimensional

plot. The three panels in the upper row refer to the case of agency conflicts,

while the three panels in the lower row refer to asymmetric information prob-

lems.28 In line with results from section 3, we obtain from the upper row that

for all volatility combinations (σ, σH) with σ < σH a step-up bond can add firm

value when the initial risk σ is not too high and additionally the risk σH after the

risk-shift is sufficiently high (see proposition 6 and corollary 7). Moreover, we

can observe that a lower tax rate τ and higher bankruptcy costs α increase the

space in which a step-up bond is attractive for the firm. The equivalent represen-

28 Thus, for the upper row, the plots are a 3-dimensional version of figure 2, which also contain

the tax rate τ as a further dimension.
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Figure 5: Admissible parameter values: Risk-Shifting Versus Asymmetric Information

The diagrams in the first line show combinations (τ, σ, σH) for which a step-up bond is superior to straight bonds given that a risk

shifting problem is present. The three diagrams refer to low bankruptcy costs (α = 0.005), normal bankruptcy costs (α = 0.15), and

high bankruptcy costs (α = 0.95). The second line provides the corresponding diagrams for a problem of asymmetric information.

The other parameter values are: x0 = 1, r = 0.07, and µ = 0.05.
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tation in the lower row shows that a separating equilibrium exists (for all other

parameter values) whenever the tax rate is sufficiently close to zero. For tax rates

above a critical value, no separating equilibrium exists when the volatility σH of

the high-risk firm is very large. However, a separating equilibrium always exists

whenever the risk σH of the high-risk firm only slightly exceeds the risk σ of the

low risk firm. Moreover, a comparison of the three diagrams reveals that higher

bankruptcy costs strongly increase the space in which a separating equilibrium

exists.

A striking similarity between the optimal use of step-up bonds in the case of

an informational problem and a risk-shifting problem is that step-up bonds are

primarily chosen by firms which have high bankruptcy costs α and a low tax rate

τ . Thus we can observe that those firms, which exhibit especially unattractive

characteristics for the issuance of consol bonds (high bankruptcy costs and low

present value of tax shields), use step-up bonds. Moreover, when the firm’s risk

σ is low, this effect is even fortified because — as illustrated above — a lower σ

results in a higher firm value and therefore in a higher firm value increase due to

a step-up feature.

Furthermore, there are two important differences between the optimal use of

step-up bonds under informational and risk-shifting problems: The first differ-

ence refers to the level of σ. When the low risk σ is relatively high, step-up bonds

are not attractive for firms that suffer from a risk-shifting problem. However, in

the case of asymmetric information, a step-up bond can be an optimal financing

instrument for low-risk firms with an arbitrarily high risk σ. This is due to the

fact that a separating equilibrium exists for any σ whenever the risk σH of a

high-risk firm does not exceed σ too much. Consequently, the observation that a

firm with a high risk uses step-up bonds favors the assertion that this firm wants

to signal that it does not have an even higher risk σH , because the opportunity

to prevent a risk-shift cannot be worthwhile for it.

The second major difference concerns the level of σH . In the presence of an infor-

mation problem, a lower σH for a given σ increases the attractiveness of step-up

bonds. This is because if for a combination (σ, σH) a separating equilibrium with

step-up bonds exist, then it is still optimal for any lower risk σH with σ < σH to

use a step-up bond. This is not necessarily true for higher σH . In the case of a

risk-shifting problem, we obtain the opposite relationship, i.e. if for a combination

(σ, σH) a step-up bond is optimally used, then for every higher risk σH a step-up

bond is still optimal. Conversely, for a σH that only marginally exceeds the low
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risk level σ a step-up feature is not optimal in the case of a risk-shifting problem.

As a consequence, in the case of an asset substitution problem, step-up bonds are

only used when the risk-shifting problem is sufficiently severe, i.e. the difference

σH − σ is high, while for signalling reasons, even a modest information problem

(i.e. the difference σH − σ is low) supports the use of a step-up bond.

6 Conclusion

The observation that firms have recently issued rating-trigger step-up bonds

brings up the question: What is the reason for a firm to commit itself to in-

crease the debt service at a time when financial conditions have worsened? This

question is even more puzzling in the framework of the well-established tradeoff

models for the optimal capital structure. Two frictions, that are notorious in

financial economics, might serve as explanations: Agency conflicts and asymmet-

ric information problems. Results from the existing literature have discarded the

former, but confirmed the latter hypothesis.

Our analysis contributes to this debate in the following points: First, by solving a

more general optimization problem, which consists of maximizing firm value with

respect to all (three) verifiable parts of the contract and which involves an opti-

mal endogenous risk-shifting policy, we are able to provide closed-form solutions

to the optimal step-up design when agency conflicts are present. Furthermore,

we derive conditions under which it is optimal to solve the agency conflict by

the inclusion of a step-up provision. We find that rating-trigger step-up bonds

are indeed able to mitigate the agency conflict. Second, in line with existing

results, we find that step-up bonds can establish a separating equilibrium and

thus overcome asymmetric information problems. We are able to provide an im-

portant result about the optimal design, which then shows that the equilibrium

predictions between the two hypotheses differ remarkably: A finite step-up factor,

whose order of magnitude is consistent with observed step-up bonds, is optimal

for bonds under a risk-shifting problem, while the optimal step-up factor in the

case of asymmetric information is found to be infinite. Third, the opposing con-

ditions for the characteristics of firms that issue step-up bonds to mitigate either

agency conflicts or problems of asymmetric information directly allow to identify

the underlying reason of a firm to use step-up bonds. A firm uses step-up bonds

to mitigate the risk-shifting problem when the business risk can be increased con-

35



siderably and/or the initial business risk is sufficiently low. Conversely, firms use

step-up bonds to signal favorable information even when the problem of asym-

metric information is only modest and irrespective of the initial business risk. An

empirical test of these implications is left for further research.

36



A Proof of Relation (12)

In the text, it was shown that the solution to the optimal risk shifting threshold

is

x∗
σ =











x0 if Q < 0

xT if Q > 0

[xT , x0] if Q = 0

.

In principle any combination of (δ, xT ) that satisfies the inequality Q > 0 has

the risk mitigation property and might therefore be a candidate for the optimal

solution. Denote the set of pairs that satisfy the risk mitigation property as

M = {(δ, xT ); Q > 0, xb ≤ xT ≤ x0}. It is shown in the following that there does

not exist an interior maximum for the firm value in M.

For this it is enough to check for a given δ whether there exists a maximum in

xT . Write the firm value as

V (δ, xT ) = A1 +

(

x0

xT

)β
(

A2 + A3

(

xT

xb

)βH

)

where:

A1 =
(1 − τ)x0

r − µ
+

τc

r
, A2 =

τ(δ − 1)c

r
, A3 = −

τδc

r
−

α(1 − τ)xb

r − µ

The derivative of V with respect to xT reads

∂V

∂xT

=

(

x0

xT

)β
A3(βH − β) − A2β

xT

(

xT

xb

)βH

from which we can deduce the necessary condition

x∗
T = xb

(

−
A2β

A3(β − βH)

)1/βH

This optimum, however, is a minimum as can be verified by the sufficient condi-

tion:

∂2V

∂x2
T

=

(

x0

xT

)β

[

A2β(1 + β) + A3(β − βH)(1 − βH + β)
(

xT

xb

)βH

]

x2
T

The sign of the second derivative depends on the term in squared brackets. Plug-

ging in x∗
T into this term yields a simplified representation equal to A2 β βH which

is obviously positive for all parameter values. So, we can conclude that

∂2V

∂x2
T

∣

∣

∣

∣

xT =x∗

T

> 0,
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i.e. there does not exist a maximum in M.

B Derivation of (c∗, δ∗, x∗
T ) Under the Asset Sub-

stitution Hypothesis

The thresholds xb and xT can be defined as

xb(δ, c) = δ c
(r − µ)βH

r(βH − 1)

xT (δ, c) = c
(r − µ)βH

r(βH − 1)

(

(βH − 1)(1 − δ)δβH−1
)1/βH

Note that both are linear in c, which allows for the additional definitions

Xb(δ) ≡ xb(δ, c)/c, XT (δ) ≡ xb(δ, c)/c.

We can write the firm value

V (·) =

(

(1 − τ)x0

r − µ
+

τc

r

)

−

(

α(1 − τ)xb

r − µ
+

τc

r

)(

x0

xT

)βL
(

xT

xb

)βH

+

τ(δ − 1)c

r

(

x0

xT

)βL [

1 −

(

xT

xb

)βH ]

as a function of c

V (c) =
(1 − τ)x0

r − µ
+

τc

r
− c1−βL (K1 − K2) , (21)

where the functions

K1(δ) =

(

α(1 − τ)δ βH

r(βH − 1)
+

τ

r

)(

x0

XT

)βL
(

XT

Xb

)βH

K2(δ) =
τ(δ − 1)

r

(

x0

XT

)βL

(

1 −

(

XT

Xb

)βH

)

which depend on δ but are invariant to c.

Differentiating with respect to c yields

∂V (c)

∂c
=

τ

r
− (1 − βL)c−βL (K1 − K2)

c∗ =

(

(1 − βL)(K1 − K2) r

τ

)1/βL

(22)
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Substituting back (22) into (21) and simplifying gives

V (δ) =
(1 − τ)x0

r − µ
+

τβL

r(βL − 1)

(

(1 − βL)(K1(δ) − K2(δ)) r

τ

)1/βL

With the definitions of K1 and K2, we obtain

V (δ) =
(1 − τ)x0

r − µ
+

τβL

r(βL − 1)

[βH(βL − 1)(α − ατ + τ)(δ − 1)

τ
(

x0 r(βH − 1)
(

(βH − 1)(δ − 1)δβH−1
)−1/βH

βH(r − µ)

)βL
]1/βL

Differentiating this term for δ results in

∂V (δ)

∂δ
=

βHδ − βL(1 + βH(δ − 1))

βH(βL − 1)r(δ − 1)δ

[βH(βL − 1)(α − ατ + τ)(δ − 1)

τ
(

x0 r(βH − 1)
(

(βH − 1)(δ − 1)δβH−1
)−1/βH

βH(r − µ)

)βL
]1/βL

δ∗ =
βL (βH − 1)

βH (βL − 1)
(23)

Existence of this solution can be verified by substituting δ∗ into the numerator

of the first fraction in the above derivative.

βHδ∗ − βL(1 + βH(δ∗ − 1)) = 0

For the given parameter restrictions, the following relations can be established

and verify the uniqueness of this solution

∂2V (δ)

∂δ2

∣

∣

∣

∣

δ=δ∗
< 0

∂V (δ)

∂δ

∣

∣

∣

∣

δ<δ∗
> 0

∂V (δ)

∂δ

∣

∣

∣

∣

δ>δ∗
< 0

I.e. in δ∗, the second derivative is negative, giving the sufficient condition for

a maximum. For δ < δ∗, the first derivative is positive, while for δ > δ∗ it is

negative, verifying that there is no other optimum.

39



The optimal solution δ∗ can be plugged in c∗(δ) and c∗(δ) can be plugged in

xb(δ, c(δ)) and xT (δ, c(δ)). It can be shown that this gives the following optimal

expressions:

x∗
T = x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

x∗
b =

(

1 −
βH

βL

)−1/βH

x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

=

(

1 −
βH

βL

)−1/βH

x∗
T

c∗ =
(βL − 1)

βL

r

(r − µ)

(

1 −
βH

βL

)−1/βH

x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

=
(βL − 1)

βL

r

(r − µ)
x∗

b

From these considerations, it follows that the optimal values of the firm, the debt

and the equity are

V ∗ =
(1 − τ)x0

r − µ
+

τ

r − µ
x∗

b

E∗ =
(1 − τ)x0

r − µ
−

(1 − τ)(βL − 1)

(r − µ)βL

x∗
b

D∗ =
(βL − 1 + τ)

(r − µ)βL

x∗
b

C Proof of Proposition 8

We use the following notational convention: c∗(σ) will denote the optimal coupon

and we define ξ(σ) = x∗
b/c = (µ−r)β(σ)

r(1−β(σ))
.

Moreover, we write the incentive compatibility constraints as:

ICL = V
(c,δ,xT )
L,L − V

(c,1,x0)
L,H

ICH = V
(c,δ,xT )
H,L − V

(c,1,x0)
H,H

A separating equilibrium requires that ICL > 0 and ICH < 0. We obtain for

ICL and ICH the following representations:

ICL = Λ1 − ΛL
2 − Λ3(σ) + Λ4

ICH = Λ1 − ΛH
2 − Λ3(σH) + Λ4,
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where

Λ1 =

(

x0

c∗(σH)ξ(σH)

)β(σH)(
c∗(σH)

r
−

(1 − α)(1 − τ)c∗(σH)ξ(σH)

r − µ

)

−
τc∗(σH)

r
(24)

ΛL
2 =

(

x0

min{c∗(σH)ξ(σ), x0}

)β(σ)

·

(

(1 − τ)c∗(σH)

r
−

(1 − τ)min{c∗(σH)ξ(σ), x0}

r − µ

)

(25)

ΛH
2 =

(

x0

c∗(σH)ξ(σH)

)β(σH)((1 − τ)c∗(σH)

r
−

(1 − τ)c∗(σH)ξ(σH)

r − µ

)

(26)

Λ3(·) = (1 − τ)

(

ĉ

r

(

x0

xT

)β(·)

−

(

x0

ĉξ(·)

)β(·)(
ĉ

r
−

ĉξ(·)

r − µ

)

)

(27)

Λ4 =

(

ĉ

r

(

x0

xT

)β(σ)

−

(

x0

ĉξ(σ)

)β(σ)(
ĉ

r
−

(1 − α)(1 − τ)ĉξ(σ)

r − µ

)

)

(28)

ICL and ICH coincide in Λ1 and Λ4 and differ through ΛL
2 , ΛH

2 , and Λ3(·). Note

that the minimum function in ΛL
2 is due to the fact that for a large difference

between σ and σH , c∗(σH)ξ(σ) might be larger than x0, which is not possible.29

Without loss of generality, we can choose ĉ as c∗(σ). Therefore we need no simi-

lar restrictions in Λ3 and Λ4, since c∗(σ)ξ(σ) and c∗(σ)ξ(σH) take on well-defined

limits.

Where appropriate, we indicate that the incentive compatibility constraints are

functions of σ, σH , and xT , i.e. IC = IC(σ, σH , xT ).

Lemma 10 (Characteristics)

(i) For xT = x0,

ICL(σ, σ, xT ) = ICH(σ, σ, xT ) = 0.

(ii) For xT = x0,

∂ICL(σ, σH , xT )

∂σH

∣

∣

∣

∣

σH=σ

=
∂ICH(σ, σH , xT )

∂σH

∣

∣

∣

∣

σH=σ

> 0.

(iii) For all xT ≤ x0,

∂

∂σH

(ICL(σ, σH , xT ) − ICH(σ, σH , xT ))

∣

∣

∣

∣

σH=σ

≥ 0.

29 In fact, for large σH and low σ, the equity claim for the type L firm is worthless.
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(iv) For all σH > σ,

0 <
∂ICL(σ, σH , xT )

∂xT

∣

∣

∣

∣

xT =x0

<
∂ICH(σ, σH , xT )

∂xT

∣

∣

∣

∣

xT =x0

For σH = σ, and for all xT ,

∂ICL(σ, σ, xT )

∂xT

=
∂ICH(σ, σ, xT )

∂xT

> 0.

Proof

Part (i) follows directly from the definitions of ICL and ICH , since for σH = σ,

ΛL
2 coincides with ΛH

2 , and Λ3(σ) = Λ3(σH).

Part (ii): For xT = x0, set ĉ = c∗(σ). Then tedious algebraic manipulations show

that

∂ICL

∂σH

∣

∣

∣

∣

σH=σ

=
∂ICH

∂σH

∣

∣

∣

∣

σH=σ

= −
x0

(r − µ)β2

(

τ

τ + z

)1−1/β
∂β

∂σ
·

[

log

(

τ

τ + z

)

+ z

(

1 + log

(

τ

τ + z

))]

,

where z = (α(τ − 1) − τ)β > 0. Since ∂β
∂σ

> 0, the term in the first line is neg-

ative. The term in squared brackets is negative for z > 0, so that ∂ICL

∂σH

∣

∣

∣

σH=σ
=

∂ICH

∂σH

∣

∣

∣

σH=σ
> 0 as asserted.

Part (iii): Note that ∂
∂σH

(ICL−ICH) = ∂
∂σH

(ΛH
2 −ΛL

2 +Λ3(σH)). Tedious algebraic

manipulations show that

∂

∂σH

(

ΛH
2 − ΛL

2 + Λ3(σH)
)

∣

∣

∣

∣

σH=σ

=
(1 − τ)c∗(σ)

r

(

x0

xT

)β(σ)

log

(

x0

xT

)

∂β(σ)

∂σ
.

Since ∂β(σ)
∂σ

> 0, the above expression is always positive for xT < x0 and zero for

xT = x0.
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Part (iv): Taking the derivative of IC with respect to xT yields

∂ICL

∂xT

∣

∣

∣

∣

xT =x0

=
∂(Λ4 − Λ3(σ))

∂xT

∣

∣

∣

∣

xT =x0

= −
β(σ)

x0

τ ĉ

r
> 0

∂ICH

∂xT

∣

∣

∣

∣

xT =x0

=
∂(Λ4 − Λ3(σH))

∂xT

∣

∣

∣

∣

xT =x0

=
ĉ

r

(

(1 − τ)β(σH) − β(σ)

x0

)

> 0,

where the last inequality follows from the fact that β(σ) < β(σH) < 0 holds, for

all feasible combinations (σ, σH) with σH > σ. From this, it is easily verified that

the difference is

∂ICL

∂xT

∣

∣

∣

∣

xT =x0

−
∂ICH

∂xT

∣

∣

∣

∣

xT =x0

=
(1 − τ)ĉ

rx0

(β(σ) − β(σH)) < 0.

The second assertion in part (v) follows trivially from the last inequality, where

the difference is zero for σH = σ.

Proof of Proposition 8

Consider ICL and ICH as functions of σH . From lemma 10 parts (i) and

(ii), it follows that ICL(σH) and ICH(σH) coincide for σH = σ and xT = x0,

i.e. both functions start in the same point, i.e. ICL = ICH = 0, and have the

same (positive) first derivative in σH . Shifting xT downwards by an infinitesimal

ǫ to x0 − ǫ, shifts IC at σH = σ in the negative, i.e. ICL = ICH < 0, and from

part (iii) and (iv) it follows that there exists an infinitesimal interval (σ, σ + ǫ),

where there does not exist a σH ∈ (σ, σ + ǫ) for which ICL ≤ ICH < 0. Then

there must exist a σH ∈ (σ, σ + ǫ) for which ICL > 0 > ICH , i.e. the incentive

compatibility conditions are fulfilled and the assertion follows.

D Proof of Proposition 9

Assume that the triple (c, ĉ, xT ) satisfies the incentive compatibility constraints,

where V
(c,1,x0)
H,H ≥ V

(c,δ,xT )
H,L holds with equality, i.e. ICH = 0, where ICH =

V
(c,1,x0)
H,H − V

(c,δ,xT )
H,L . The idea of the proof is to see what happens to the value

V
(c,δ,xT )
L,L of a type L firm, if we vary c and xT such that still ICH = 0 holds.

From the implicit function theorem, consider the substitution rate between c and

43



xT so that the firm value remains unaffected. For type H and L, this approach

results in the following representations

dc(H)

dxT (H)
= −

∂VH,L

∂xT

∂VH,L

∂c

,
dc(L)

dxT (L)
= −

∂VL,L

∂xT

∂VL,L

∂c

,

where VH,L and VL,L is shorthand notation for V
(c,δ,xT )
H,L and V

(c,δ,xT )
L,L . Denote this

as SRH = dc(H)
dxT (H)

and SRL = dc(L)
dxT (L)

.

To establish the result, we need to show that |SRL| > |SRH |, or |SRH |
|SRL|

< 1 for

any choice of ĉ holds. Since both SRL and SRH are negative, they indicate

that the same firm value can be obtained with a higher trigger threshold xT and

an appropriately-chosen lower coupon c. If the relationship |SRL| > |SRH | is

satisfied, an increase of xT and a decrease of c so that the firm value of the H

type firm remains constant means that the firm value of an L type firm rises.

This is due to the fact that for an L type firm a more pronounced decrease of c

is required to keep the firm value constant. As a consequence of the fact that the

firm value increases with c, the firm value of the L type firm can be increased and

the incentive conditions remain satisfied. Therefore, an increase of xT together

with an appropriate decrease of c always adds firm value to the L type firm.

These changes are feasible until either the coupon c attains zero or the step-up

threshold xT hits the current cash-flow level x0. Therefore, in any optimal case,

we can characterize the step-up bond (c, δ, xT ) as a bond with c = 0 that starts

paying a positive coupon at xT .

From the definitions of VH,L and VL,L, we find the following derivatives:

∂VL,L

∂c
=

τ

r

(

1 −

(

x0

xT

)β
)

,

∂VH,L

∂c
=

∂VL,L

∂c
+

1 − τ

r

(

(

x0

xT

)βH

−

(

x0

xT

)β
)

,

∂VL,L

∂xT

=
(c − ĉ) τβL

(

x0

xT

)βL

r xT

,

∂VH,L

∂xT

=
∂VL,L

∂xT

+

(c − ĉ) (1 − τ)

(

βL

(

x0

xT

)βL

− βH

(

x0

xT

)βH

)

r xT

.
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With these derivatives, |SRH |
|SRL|

< 1 is equivalent to

|SRH |

|SRL|
=

∂VH,L

∂xT
/

∂VL,L

∂xT

∂VH,L

∂c
/

∂VL,L

∂c

< 1

⇔

1 + 1−τ
τ

βL

“

x0
xT

”βL
−βH

“

x0
xT

”βH

βL

“

x0
xT

”βL

1 + 1−τ
τ

“

x0
xT

”βH
−

“

x0
xT

”βL

1−
“

x0
xT

”βL

< 1

Note that |SRH |
|SRL|

is independent of c and ĉ. By straightforward algebraic manipu-

lations the above inequality can be written as

1

βH

(

1 −

(

x0

xT

)−βH

)

<
1

βL

(

1 −

(

x0

xT

)−βL

)

. (29)

One can show that the derivative of 1
β

(

1 −
(

x0

xT

)−β
)

with respect to β

∂

∂β

(

1

β
−

1

β

(

x0

xT

)−β
)

=
1

β2

(

x0

xT

)−β
[(

1 −

(

x0

xT

)β
)

+ log

(

(

x0

xT

)β
)]

is always negative. This is due to the fact that the sign of the derivative comes

from the term in squared brackets. Since the probability-weighted discount factor

D =
(

x0

xT

)β

always lies in the interval D ∈ (0, 1) for xT < x0, the term (1−D) +

logD is negative such as the derivative of the relevant term. Since βL < βH ,

inequality (29) is always fulfilled, and the assertion follows.
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